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* Considering the cost associated with - We first build an archive of identifying latent software

labeled malware signatures via hierarchical factorization which includes . With.th.e reject-option, we can absfcain fr_om making a
prediction when an unknown specimen is seen:

estimation of the number of latent signals!?!.
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generalize to new malware
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software analogous to the genomic DNA,
5,000 malware specimens from families ramnit, adposhel,

malware as malicious mutations (e'g'v emotet, zusy. We select ramnit to represent a novel family.
cancer) in the software genome, and » The performance of our method is reported with the Area

W(subset) == Yas

targets extraction and recognition of
accurate mutational malware signatures.

* Using the ideas of our 2021 R&D 100 winning
SmartTensors Al Platform!’, we introduce a new ML
method for malware family classification and
novel malware family detection that achieves state-
of-the-art results while addressing the major
shortcomings in the field.
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S1: Extract observational features from labeled malware.
S2: Non-negative factorization of the observational data X
which gives us a factor matrix W (k columns are the latent
signatures) and H (rows are the magnitudes of each of the k
signatures).

S3: Apply a custom clustering which assigns each of the
samples to one of the k signature-clusters.

S4: When a uniform cluster is identified, i.e. a cluster which
contains specimens from the same family, we add the
annotated cluster centroid to our archive of signatures.
Otherwise, we continue with successive factorizations in a
hierarchical manner to separate the mixed latent signatures.
New sample identification: Project a new sample onto the
archive using Non-negative Least Squares Solver (NNLS),
and obtain a similarity score.
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Under the Curve of Risk-Coveragel®! (AURC, where lower is
better), and the accuracy score.

We achieve a great AURC score of 0.028: which means
that at ~90% coverage we get an accuracy score of ~0.97
and correctly identify ~60% of ramnit as novel.
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