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Anti-virus (AV) vendors use machine learning (ML) for malware detection,!'2l and ML based intrusion detection influences the cyber Kill
chain.l3! Studying classifier evasion strategies dictates cyber defense against malice.l’] We stage a grey-box setup to analyze a scenario
where a malicious actor trains a model to discover the mutations that misclassify an instance using Monte Carlo Tree Search (MCTS).
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e Classifier evasion iIs like a chess game
between the adversary and the victim
e The winning ‘board’ is a successful mutation ‘

e Use different subsets of EMBER-2018 dataset
[4] to train victim and surrogate models
e Attacker trains a surrogate Decision Tree
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that makes the malware undetectable S - % Modified Sample o MCTS confirms the evasive feature
* MCTS examines mutations without @ @ ® modifications using the surrogate model

computing all possible permutations of . e Organization AV systems are not public
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