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Objectives
Traditional Machine Learning

approaches fail to capture the

multi-dimensional details of malware.

We introduce a novel methodology to

tackle this problem:

e lensor factorization is a powerful
unsupervised learning method.

o Unique perspectives/patterns are
extracted from distinct tensor
configurations.

o Generate forest of random tensor
configurations to exploit the wisdom
of crowds philosophy.

o Clustering can capture the patterns.

GMM for Capturing the Patterns
Specimens of different classes form

groupings in/among the components:

o Apply the Gaussian Mixture
Model (GMM) clustering
algorithm to capture patterns.

o Clustering is applied to each latent
factor for the first dimension aﬁ' 1)
within each R; component, for each of

the / tensor configurations X;.

Semi-supervised Ensemble Learner
Known samples are used to vote on

specimen class and for identifying and

removing bad clusters:

o Utilize the cluster purity score
threshold to remove noisier
components.

o Each r component of the ith
tensor votes on the sample
classes over j clusters ¢;, ; using
the same known instances.

Dataset Num. Random tensors F1 Score o _
EMBER.2018 500 09196 o Class prediction can be obtained by
IRIS 2000 0.9302 performing a majority vote on each
20 Newsgroup 500 0.88

sample.

Final Class Prediction

Experiments and Results
Precise classification results using only

2% of the corpus in classifying the
remaining of the data:
o EMBER-2018 [4| dataset used to

classity malware and benign-ware.

o PE header information in the
executables are the features.

o Classification was not possible for the
samples where no informative patterns
are detected (around 50% of the
corpus).

0.924 F1 scores are achieved
when classification is possible.

e Works on other datasets: IRIS and 20
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