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Abstract—Highly specific datasets of scientific literature are
important for both research and education. However, it is difficult
to build such datasets at scale. A common approach is to build
these datasets reductively by applying topic modeling on an
established corpus and selecting specific topics. A more robust but
time-consuming approach is to build the dataset constructively in
which a subject matter expert (SME) handpicks documents. This
method does not scale and is prone to error as the dataset grows.
Here we showcase a new tool, based on machine learning, for
constructively generating targeted datasets of scientific literature.
Given a small initial ”core” corpus of papers, we build a citation
network of documents. At each step of the citation network, we
generate text embeddings and visualize the embeddings through
dimensionality reduction. Papers are kept in the dataset if they
are ”similar” to the core or are otherwise pruned through human-
in-the-loop selection. Additional insight into the papers is gained
through sub-topic modeling using SeNMFk. We demonstrate our
new tool for literature review by applying it to two different fields
in machine learning.

Index Terms—transformers, nlp, non-negative matrix factor-
ization, data visualization

I. INTRODUCTION

Literature review is an integral task of scientific research.
The job often involves manually identifying papers based
on keyword searches and following relevant citations. The
organization of highly specific scientific literature datasets
and application of data analysis techniques may provide
deeper insight and discover new research directions. However,
curating such highly specific datasets of scientific literature
requires the time-consuming help of a subject matter expert
(SME). Here, we introduce a new machine learning-based
(ML) assistant tool that builds highly specific scientific lit-
erature datasets. Bibliographic Utility Network Information
Expansion (BUNIE) streamlines literature review with an
intuitive system while enhancing the specificity of the papers
using ML techniques and human-in-the-loop procedures.

In this work, we contribute a novel approach to the scientific
dataset expansion problem by integrating transformer-based
document embeddings with human-in-the-loop pruning to gen-
erate targeted scientific datasets. We then use non-negative ma-

trix factorization (NMF) with automatic model determination
(NMFk) for modeling the topics in these papers to further
refinement [1]. Our approach is unique in its inclusion of a
human-in-the-loop for enhancing and distilling the extracted
topics, such that the corpus of papers is narrowed down via an
interactive process. To the best of our knowledge, this iterative
method is the first to offer users the ability to analyze the
topic modeling results and apply their feedback to enhance
the literature review procedure by steering the ML output. The
feedback loop enables the users to grow and refine the results
until a targeted dataset of a specific size is reached, providing a
unique and interactive solution to large-scale literature review.

The process begins with a small number of core papers
selected from a topic of interest by an SME. At this initial
stage, the topic may not fully align with the user’s objectives
and is likely incomplete. The core papers are used as a
reference to obtain an additional set of relevant documents
that increase the size and enhance the specificity of the existing
dataset. The additional documents are selected using a citation
network formed from the existing papers in the dataset. The
expansion results are pruned using multiple methods, including
an interactive selection by the user, document embedding
similarity metrics, and topic modeling.

In contrast to the traditional static approach of computing
the topics, our approach is iterative and dynamic. It allows for
repetition of the refinement cycle, growing the dataset with
each iteration. This enables the creation of large but specific
datasets, ideal for training large language models. Through
this interactive, user-driven approach, we empower users to
steer the topic extraction process directly, ensuring that the
results are tailored to their specific requirements. This paper
demonstrates our novel tool by showcasing two different use
cases on two different core datasets.

Our contributions include:
• Introducing a novel paper selection and visualization tool

for scientific dataset curation and literature review.
• Utilizing text embeddings together with dimensionality

reduction techniques to model the documents.
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Fig. 1: BUNIE’s distillation pipeline. Panel A: The SME selects specific papers, shown as a bag-of-words wordcloud. Panel
B: The dataset expands through the citation network. The wordcloud of a selected subset shows the how the vocabulary differs
from the core. Panel C: Human-in-the-loop pruning removes data. The wordcloud begins to resemble the core. Panel D:
An embedding heuristic removes papers far from the core. The dataset becomes more compact. The wordcloud approaches
parity with the original. Panel E: SeNMFk topic modeling produces H-clustering factorization to remove clusters lacking a
core paper. A dense, yet substantial set of documents indicates a successful distillation. The wordcloud closely resembles the
original. As indicated by the Ellipse iterations can be made for refinement or the data extracted in repose for downstream
analysis.

• Integrating our machine learning approach to scientific
literature with human-in-the-loop procedures for refining
and guiding text modeling.

• Demonstrating the capabilities of our tool by applying it
to the scientific literature in two fields of research.

II. RELATED WORK

This section summarizes techniques and prior works applied
in forging a highly-specific dataset of research papers.

1) Topic Modeling & Tensor Decomposition: A common ap-
proach to topic modeling is Non-Negative Matrix Factorization
(NMF) [2], [3], and when applied to a document-word matrix
identifies latent patterns of the corpus. Semantic NMF with au-
tomatic model determination (SeNMFk) is an NMF extension
incorporating the text’s semantic structure leveraged in [4]–
[6]. Term frequency–inverse document frequency (TF–IDF)

and the co-occurrence/word-context matrices are often used.
Although common, more advanced methods exist.

2) Document Embeddings & Transformers: Vector repre-
sentations of a text were previously used for dimensional
mapping, cross-comparisons, and similarity analysis [7]. Com-
mon models for learning word embeddings have been Global
Vectors for Word Representation (GloVe) [8] and Word2Vec
[9]. Transformers have been used for large language models
(LLM) as internal states, a popular example is the Bidirectional
Encoder Representations from Transformers (BERT) [10].
Here, the SciNCL transformer generates document embed-
dings [11], where the document mapping includes citation
data.

3) Data Visualization and Tools: Several publicly available
citation network and topic modeling tools are available to
explore and analyze research papers, such as Topic Modeling
Tool [12], and Stanford Topic Modeling Toolbox [13]. While



the tools gather topical data from inputs, they lack visualiza-
tion. Alternatively, ’Connected Papers’ (CP) has visuals and is
a resource for discovering scientific literature [14]. While CP is
useful for co-citation and bibliographic literature exploration,
our tool advances bibliographic utility by creating a specialized
document dataset leveraging a citation network coupled with
human-in-the-loop and machine learning. Another research
visualization tool, designed to handle the apex of Covid-19
research production, is explained in Ref. [15]. The tool cleaned
the text (tokenized, removed stop-words, & punctuation &
capitalization), constructed a TF-IDF matrix, then reduced
dimensions for graphing through t-distributed stochastic neigh-
bor embedding (t-SNE). Here, we use Uniform Manifold
Approximation and Projection (UMAP) [16] to reduce 768-
dimensional embeddings output by SciNCL [11] to 2D.

4) Human in the Loop: User feedback has recently been
adopted into several schemes, including OpenAI’s ChatGPT
[17] and Google’s BARD [18]. In Ref. [19], a knowledge
graph is built from text-prompting a user with feedback in
every response to provide an acceptable retail-item recommen-
dation. Differences between BUNIE and Ref. [19] exist, as
the study’s structure provides one recommendation, whereas
BUNIE offers a dataset. Interactive modes also differ–ours
uses click-and-drag selection to delete rather than prompts.
Furthermore, BUNIE removes papers at the HITL phase
whereas [19] requests positive and negative feedback about
recommendations.

A HITL work more similar to BUNIE in Ref. [20] aims
to build labeled image datasets for Computer Vision (CV)
applications. A user labels a few images, which are extrap-
olated to all in the image’s cluster, then the images are
model-evaluated for reassignment. Like BUNIE, the process
is iterated to convergence but differs in direct user influence
of datum retention.

III. METHOD

The utility of BUNIE comes from the combination of
being able to quickly expand a dataset of publications by
traversing the citation network in combination with being able
to curate the dataset at scale by effectively using document
text embeddings. As depicted in Figure 1, the workflow
is cyclical, requiring iterative steps of document acquisition
and refinement. The ultimate goal is to create an extensive
collection of scientific literature centered around a specific
topic, using a small, hand-picked set of relevant papers as
the starting point.

1) Selecting the Core: First, the user provides BUNIE with
a set of ”core” papers, comprised of a unifying theme or topic
— the anchor of the dataset. A subject matter expert (SME)
should select and/or review this core to ensure quality and
relevance. It is important to remember that BUNIE expands the
dataset by traversing the citation network of known papers. A
single, well-cited document may produce an extensive dataset
after a few expansions following the citation network, while
a collection of less frequently cited documents may yield
a more limited network. The core papers are provided to

BUNIE using unique paper identifiers such as DOI. Using the
SemanticScholar API [21], BUNIE extracts basic information
such as the title, abstract, citations, and references.

2) Expanding the Dataset: With the core established,
the user can grow the dataset by making a ”hop” within
the citation network. This network is a directed graph of
publications and their respective citations. If we denote a
document, a, as belonging to a set of documents X and a
document, b, belonging to the set of their citation Xc, we can
say that a → b if and only if b cites a. In this context, a
hop can be defined as X := X ∪ Xc. A second hop would
then also incorporate the citations from the documents in Xc,
which was acquired from the first hop. The number of hops
performed is left to the user’s discretion, thereby controlling
the scale of dataset expansion. The process can continue until
the dataset reaches a desired size or until the entire citation
network has been traversed. BUNIE also offers the capability
to form the citation network with the edges reversed, using
references as the basis instead of citations. This feature can
be particularly useful when the core consists of relatively new
or infrequently cited publications.

3) Pruning the Dataset: Given the interconnected nature of
the citation network, not every paper found through the hop
process will be relevant to the core. For example, a highly
influential publication may be cited as an acknowledgment in
subsequent studies focusing on entirely new issues. Thus, it
is crucial to perform pruning at each hop along the citation
network to prevent irrelevant topics from propagating within
the growing dataset. In BUNIE, pruning is accomplished
through a combination of the following three techniques.

Data Controls
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Hypersphere Prune

Undo Delete

Fig. 2: BUNIE GUI screenshot during HITL pruning after
two hops. Core papers are green, 1st hop red, 2nd hop blue.
The SME can be seen selecting the papers in yellow and their
corresponding bag-of-words wordcloud is generated to the left.

A. Human-in-the-Loop (HITL) Pruning:

Textual similarity comparison presents a substantial chal-
lenge for humans and computational algorithms. To simplify
this task, we employ SciNCL [11] to transform the aggre-
gated titles and abstracts of the dataset into 768-dimensional
embeddings. These high-dimensional embeddings are then



reduced to a two-dimensional projection using UMAP [16].
Semantically similar papers tend to cluster together in this two-
dimensional space, providing an intuitive visual representation
of the dataset’s structure. This process simplifies manual
content comparison.

To aid in the manual analysis and document pruning, we
have designed a graphical user interface (GUI) to quickly
select and examine many papers using the UMAP visualized
projection of the embeddings, as shown in Figure 3. The SME
can highlight papers by drawing a custom lasso or rectangle
over the projected papers. The tool then generates a bag-of-
words wordcloud to show the most frequent vocabulary in the
chosen paper set. For a finer-grain analysis, the GUI provides
a data table displaying all known data fields for the selected
papers that an SME can analyze.

B. Automatic Pruning of Document Embeddings

While UMAP is useful for document visualization and
enabling HITL pruning, a significant portion of the embedding
structure is lost. To counteract this loss, we introduce a method
for pruning the document embeddings in their original high-
dimensional space. Each core paper in the dataset is considered
specialized within its field. Therefore, the embeddings of the
new papers added through the citation network are evaluated
for their proximity to each of the core paper embeddings.
The intuition is that the embeddings of relevant papers should
reside ”close” to one or more of the embeddings of the core
papers. In mathematical notation, given a set of core papers
P = {p1, .., pn} and their corresponding embeddings E =
{e1, .., en}, the radius ρ for each hypersphere is calculated as:
First, compute the pairwise Euclidean distances for all em-
beddings in E, forming a set D = d(ei, ej) : ei, ej ∈ E, i ̸= j
where d(ei, ej) denotes the Euclidean distance between em-
beddings ei and ej . Second, the median Euclidean distance
of all core embeddings, denoted as ρ = median(D), is a
threshold for new documents. Each core embedding becomes
a hypersphere center with radius ρ and included papers must
fall into atleast one of these spaces.

ρ

ρ

ρ

Fig. 3: 2-dimensional representation of hypersphere pruning.
Core papers are red dots, citations/ references are blue squares,
and hyperspheres are dotted red circles.

C. Pruning through Topic Modeling

To further ensure topic cohesion, we perform topic modeling
on the pruned dataset. We utilize Semantic non-Negative Ma-

trix Factorization with automatic model determination (SeN-
MFk) [6]. Given the documents, we form a term frequency-
inverse document frequency (TF-IDF) matrix X ∈ IRm×n

+ and
an shifted positive pointwise mutual information (SPPMI) ma-
trix S ∈ IRm×m

+ which encodes the semantic structure of the
data (where m is the number of tokens in the vocabulary and n
is the number of documents). We then jointly factorize X and
S to produce two non-negative factor matrices W ∈ IRm×k

+

and H ∈ IRk×n
+ , such that Xij ≈

∑k
s WisHsj . Here, W

represents the distribution of words across different topics,
and H describes how these topics are distributed across the
documents. We use H to associate each document with the
topic that it contributes to the most. The dataset can then
be pruned by discarding documents from topics that do not
feature any core documents.

It is important to conduct robust pre-processing of the
documents to establish a meaningful vocabulary. Our pre-
processing procedure removes common stop-words, symbols,
newline characters, HTML tags, non-ASCII characters, e-mail
addresses, and copyright statements. There are instances where
specific tokens or phrases denote unique terms in the chosen
domain. While these terms might appear in different forms
(such as spelling, acronym, or hyphenation), all forms signify
the same concept. Standard pre-processing may split a multi-
token term into separate tokens, which can destroy potentially
crucial meaning. However, given that an SME initially chooses
the core papers, the SME can also pinpoint important terms
and their assorted forms. Once these terms are identified, we
consolidate all forms of each term into a singular entity. In
the case of multi-token terms, we retain either the acronym
or a hyphenated version to ensure that the term’s meaning is
preserved in the TF-IDF and SPPMI matrices. In our tensors
literature example, we substitute tensor-train with {TT, tensor
train} and partial-differential-equation with PDE and all other
various forms. Another strategy that we employ at this step
involves reusing the same vocabulary for every hop. The
vocabulary derived from the core papers is consistently applied
at each pruning decomposition. Consequently, less relevant
papers (those using a significantly different vocabulary than
the core) are represented as sparse entries in the TF-IDF
matrix, reducing their influence on the decomposition. This
step also enhances computational efficiency as the vocabulary
dimension remains constant and does not grow with the
number of documents.

Through these methods, BUNIE effectively enhances the
thematic coherence of the dataset while maintaining topical
alignment with the original core. This results in a significantly
larger, interconnected dataset that retains the integrity of the
original subject matter, ready for more in-depth exploration
or application. Furthermore, to quantify the efficacy of our
approach, we employed a compactness score, which is a metric
that evaluates how closely the documents in the dataset are re-
lated to each other in terms of the topics they cover. The com-
pactness score of a dataset is calculated using cosine similarity
between the document embeddings. In mathematical terms,



given a set of document embeddings E = {e1, e2, ..., en}, the
compactness score is given by:

C =
1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

ei · ej
|ei|2|ej |2

, (1)

where n is the total number of documents, ei and ej are the
embeddings of the ith and jth document, · denotes the dot
product, and | · |2 denotes the Euclidean norm. In measur-
ing topic coherence using document embeddings, the cosine
similarity between two embeddings, which ranges between
-1 and 1, provides a measure of semantic alignment. A
negative cosine similarity score, implying that the documents
are semantically opposed, is an unlikely scenario within a
specific topic. Therefore, we constrain the compactness score
to fall between 0 and 1 to facilitate a meaningful quantification
of topic coherence or alignment, accomplished by taking
the absolute value of the cosine similarity. Higher values
suggest a greater topic similarity between documents. The
final compactness score, a value also ranging between 0 and
1, is computed as the average cosine similarity across all
pairs of documents in the dataset. By this measure, a higher
compactness score indicates a more coherent or well-aligned
set of documents regarding their topical content.

IV. RESULTS

This section presents two applications of BUNIE.

A. Expanding Targeted Dataset

We first applied BUNIE to 10 papers hand-picked by an
SME on a specific topic. These publications were influential
papers in solving integral equations using tensor-train decom-
position. With the ”core” established, we sought to expand
the dataset along the citation network. After the first hop,
632 papers were found. Using the visualization, papers not
matching the topic were quickly pruned. While these papers
tangentially addressed tensor decomposition, they failed to
engage with the specific issues highlighted in the core papers.
Automatic pruning was applied next through embeddings and
SeNMFk. 411 papers remained after pruning in the first hop,
including the original 10 core papers.

For such a minimal subset of papers, it was feasible to use
the two-dimensional projection of the document embeddings
in conjunction with bag-of-words word clouds to promptly
identify the outlying papers. However, upon the second citation
network expansion, the dataset rapidly grew to more than
8,000 papers. At this stage, the automatic pruning of the
citation network became paramount. After pruning the second
hops papers, a third hop was performed. After pruning, the
final result came to 3,915 papers. This data flow demonstrates
how BUNIE effectively combines human intuition with algo-
rithmic utility to create a focused, relevant scientific dataset.

As demonstrated in Table I, BUNIE’s iterative topic ex-
pansion and alignment increases the compactness score of
the dataset. While the first expansion added many documents,
many unrelated documents were included, causing the com-
pactness score to drop from 0.894 to 0.823. The subsequent

automatic pruning based on hypersphere proximity to the
core document embeddings effectively increased the compact-
ness score to 0.860, by eliminating less relevant documents,
reducing the total document count to 4625. Following the
hypersphere pruning, we aligned topics by applying SeNMFk
and selecting relevant subtopics, further refining the dataset.
This increased the compactness score and resulted in a more
manageable dataset containing 3915 documents. The increase
in compactness score at each stage of the BUNIE process
demonstrates the method’s effectiveness in maintaining topic
cohesion while expanding the dataset from a small set of core
papers.

TABLE I: Compactness Scores

Dataset Compactness Num. Documents

Tensors
Core Papers 0.894 10
3-Hops, No Pruning 0.823 10338
3-Hops, After Hypersphere Pruning 0.860 4625
3-Hops, After SeNMFk Pruning 0.861 3915

Audio Processing
Core Papers 0.913 68
4-Hops, No Pruning 0.798 15294
4-Hops, After Hypersphere Pruning 0.861 1987
4-Hops, After SeNMFk Pruning 0.861 1081

B. Exploratory Data Expansion
In recent years, the paper “Transformer-XL: Attentive Lan-

guage Models Beyond a Fixed-Length Context” [22] has
drawn significant attention across multiple research domains.
Given this impact, BUNIE allows exploration of the different
domains influenced by the paper, made possible by topic
modeling and visualizing text embedding projections.

We identified the associated topics of five prominent clus-
ters: audio processing, computer vision, speech processing,
natural language processing, and proteins. The audio pro-
cessing cluster contained music terms from 68 papers. These
papers were treated as a new core, then expanded through
four hops along the citation and reference network, resulting
in 15,294 papers. Following the expansion, the dataset was
pruned through hyper-sphere calculation, retaining only papers
within at least one of the 68 first-hop paper hyperspheres.
At this point, the dataset contained 1,987 papers. SeNMFk
then made topic clusters, preserving 1,081 papers from 8
core-containing clusters of 19 total. Top words from retained
clusters were music, attention, generative, lyric, video, score,
learn, and emotion. Table I shows dataset compactness in-
creased with each pruning step. The core’s 0.913 compactness
decreased to 0.798 after four expansion hops. Hypersphere
pruning increased the score to 0.861, indicating the removal of
off-topic papers. Compactness remained stable after SeNMFk
pruning, suggesting relevant papers were retained.

Notably, retained paper distributions per hypersphere pruned
embedding mappings and SeNMFk decompositions will not
always align with a human curator’s intuitive UMAP-reduced
selections. The discrepancy highlights the unique value of
human judgment with algorithmic tools in dataset curations.



V. CONCLUSION

This work contributes a novel system to build scientific
datasets. With minimal input, we are able to iteratively build
a dataset of scientific literature anchored on the core subject
provided by an SME. At each step, the dataset is enlarged
through the citation network and subsequently pruned using
three separate methods, including one with human-in-the-loop.
The result is an expanded dataset of work relevant to the core.

Promising future work is to seed an initial topic specifica-
tion. The system would then iterate autonomously, filtering out
documents and recalculating topic estimates to achieve topic
distillation based on reinforcement learning. Auto-distillation
could dynamically adapt the topic extraction and refinement
based on continuous feedback on the topic’s state. The sys-
tem’s efficiency and accuracy could improve over time, leading
to more precise and reliable topic distillation.

Additional considerations include various embedding meth-
ods and a ’synthetic’ core paper to serve as a foundation for au-
tomated topic alignment. Graph neural networks to understand
citation relationships can also be explored, furthering insights
into the structure and interconnections of the literature. These
enhancements would augment the effectiveness of BUNIE,
further assisting researchers in the quest for knowledge.
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