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Distinguishing malicious anomalous activities from unusual but benign activities is a fundamental challenge for cyber defenders.
Prior studies have shown that statistical user behavior analysis yields accurate detections by learning behavior profiles from
observed user activity. These unsupervised models are able to generalize to unseen types of attacks by detecting deviations from
normal behavior, without knowledge of specific attack signatures. However, approaches proposed to date based on probabilistic
matrix factorization are limited by the information conveyed in a two-dimensional space. Non-negative tensor factorization, on
the other hand, is a powerful unsupervised machine learning method that naturally models multi-dimensional data, capturing
complex and multi-faceted details of behavior profiles. Our new unsupervised statistical anomaly detection methodology
matches or surpasses state-of-the-art supervised learning baselines across several challenging and diverse cyber application
areas, including detection of compromised user credentials, botnets, spam e-mails, and fraudulent credit card transactions.
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paper, we improve our prior findings, demonstrate additional use cases, and present a more detailed description of
our methods. In comparison to the original publication, we showcase the multipurpose capability of our methods
by extending the anomalous authentication event detection results to include the identification of botnet traffic,
spam e-mails, and fraudulent credit card transactions. Additionally, we boost the real-world operational value of
our methodology by reducing false positive rates using an ensemble of tensors. We also provide a fast Python
implementation of the CANDECOMP/PARAFAC Alternating Poisson Regression (CP-APR) algorithm, that was
originally implemented in the MATLAB Tensor Toolbox [8]. Python CP-APR, named pyCP_APR1, can be used
via an API similar to Scikit-learn [48], and leverages a PyTorch [47] backend for faster computation of tensor
decomposition on the GPU, which is essential for analysis of large sparse tensors. pyCP_APR also includes a
Numpy backend for tensor decomposition of dense and sparse tensors on the CPU. Finally, we differentiate the
performance for link-prediction and event-prediction in our results, and consider the cases where the model cannot
score an event or a link due to failed mapping. With the new scoring methods, we present performance results for a
wider range of use cases.

2 INTRODUCTION
Detection of cyber anomalies, such as compromised accounts, insider threats, malware traffic, and phishing continues
to be a significant challenge for cyber defenders. In 2016, when Turcotte et al. introduced the Poisson matrix
factorization model for cyber anomaly detection, 63% of confirmed data breaches involved stolen user credentials
[57].This figure has climbed to 80% in 2020 [4], and the average number of yearly security breaches has increased
by 67% within the past 5 years [13]. At the same time, the cost of malicious insider attacks increased by 15% in
2019, and still continues to be the type of threat that takes the longest to resolve [13]. Because an insider has fewer
security barriers to overcome, a breach that takes minutes to accomplish can take months or years to discover [2]. At
the other end of the spectrum, botnets were one of the costliest cybercrimes in 2019 [13], and spam e-mails persist
as an extremely effective attack vector. Phishing was involved in 81% of the cyber espionage breaches in 2020 [3].
Meanwhile, over 250 million devices were compromised by a phishing system named TrickBooster in 2019, and the
prominent Windows threat, Emotet, which uses e-mail as the entry point to organization networks was one of the top
threats globally in 2019 [6]. When hunting for intruders or malicious insiders on their networks, incident response
teams primarily rely on rule-based indicators such as hand-crafted signatures or open-source threat intelligence
feeds. Although rule-based indicators perform well when detecting known attacks, they require immense manual
work to tune for each enterprise network, and often fail to detect patient and persistent attackers. Currently, alerts
are generated only for 9% of attacks [5], and the average cost of a security breach is $3.86 million [1]; therefore,
there is an urgent need to improve statistical anomaly detection methods and their associated operational workflows
in order to drive increased adoption.
Machine Learning (ML) and user behavior analytics aid in defense against threats by increasing detector

effectiveness, reducing response and recovery times, and saving up to 38% in technology spending [12, 13].
However, it is difficult to understand the decisions made by the popular ML systems, such as neural networks, since
they are black-boxes [31]. Alternatively, non-negative tensor factorization methods produce interpretable statistical
results that can be understood by incident responders. At the same time, generating actionable alerts with anomaly
detection systems requires identifying unusual events that correspond to malicious activity. New events happen
continually on a network, and no labeled datasets exist with enough detail to build reliable detection systems using
supervised learning alone. Because the number of daily events on a corporate network can easily reach into the
millions or billions, deployable anomaly detectors must achieve extremely low false alarm rates. Eliminating rare,
but benign, events from these alerts is challenging, since human activities are difficult to predict; for example, users
authenticate to new network resources, visit new websites, and receive e-mails from new sources on a continual

1pyCP_APR is available at https://github.com/lanl/pyCP_APR
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Fig. 1. Hourly authentication events from multiple source computers over 90 days for one compromised user, User087542, in the
LANL Unified Host and Network Dataset. The user’s activity reveals time- and device-based predictable patterns that deviate
from the single anomalous log-on.

basis. Our work builds upon state-of-the-art algorithms for user behavior analysis to build more nuanced methods
of normal user behavior over time. We show that our model can accurately detect actions that deviate from the norm
by demonstrating its performance in detecting stolen user credentials during a penetration testing event on the Los
Alamos National Laboratory (LANL) network, identifying botnet activities hidden among the background HTTP
traffic collected from an Internet Service Provider (ISP), detecting real spam e-mails, and recognizing fraudulent
credit card transactions, all with the same unsupervised model.
Previous work has shown that recommendation system models based on matrix factorization can identify “peer

groups” of users and devices, which allow data-driven predictions of future user actions [21, 46, 57]. Users tend to
exhibit a seasonal behavior in the network, where patterns of activities are correlated in time. For example, a simple
predictable user behavior is an employee initiating a logon from a desktop computer every weekday, except Friday,
at approximately 7:00am. Figure 1 shows activities from such a real, anonymized LANL user (User087542) over 90
days. In this work, we extend peer-based models to include multiple dimensions of an activity profile, such as users,
source devices, destination devices, authentication status, IP addresses, and temporal information. We apply tensor
factorization to extract complex and nuanced high-dimensional latent activity profiles that provide highly predictive
models of user behavior. These models allow us to to improve the sensitivity and specificity of peer-based anomaly
detection.
Extending tensor factorization methods in a principled statistical framework allows us to achieve state-of-the-art

anomaly detection results on a wide range of cyber security applications, including detecting botnet activities, spam
e-mails, fraudulent credit-card transactions, and compromised user credentials. Our unsupervised detection results
are compelling because they compete with prior state-of-the-art supervised methods that require labelled malicious
activity. As compared to prior supervised methods, our approach is much more general and allows us to detect
previously-unseen types of anomalies. Our contributions include:

• Generalizing existing statistical models to jointly learn multi-dimensional activity profiles.
• Demonstrating that jointly-learned activity profiles improve the detection of anomalous events.
• Presenting state-of-the-art results for anomalous entity detection, for example, identifying a penetration
testing team’s source device within the top 3 most anomalous devices during the month-long test period.

• Performing botnet, spam e-mail, and credit card fraud detection using an unsupervised methodology that
competes with prior supervised and semi-supervised solutions.

• Reducing false positive rates via p-value fusion methods over an ensemble of tensors.
• Developing a fast Python implementation of the CP-APR algorithm, named pyCP_APR, that can run on both
a CPU and GPU, and provides a user-friendly API similar to the widely used Scikit-learn package.
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• Expanding the utility of CP-APR by incorporating an anomaly detection interface in pyCP_APR.

3 BACKGROUND
Our work draws on prior advances in the areas of statistical anomaly detection and tensor factorization. Here, we
present a brief summary of related work in both fields.

3.1 Anomaly Detection
Detecting fraud and network intrusions without specific knowledge of the attacker’s methods has been a long-standing
and vexing problem [45]. The broad range of prior approaches include classical ML-based methods, such as boosting
and random forests [43, 49, 60], and deep learning-based methods, such as Generative Adversarial Networks
(GANs) [64] and Autoencoder-based approaches [18, 23, 33]. A number of prior approaches have performed
anomaly detection in reduced feature space using dimensionality reduction techniques [32, 36, 39, 45]. A variety
of classical factorization-based techniques, such as Principal Component Analysis (PCA) [17] and Non-negative
Matrix Factorization (NMF) [7] have been applied to detect anomalies using reconstruction error as a metric.
PCA and NMF extract “normal” patterns hidden in the data by performing dimensionality reduction. However,
reconstruction error-based models lack a direct statistical interpretation, and thus do not directly produce a p-value
for anomalies. Statistical models have stronger mathematical guarantees and provide more direct methods for fusing
analytic outputs.
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Fig. 2. Binary tensor with the dimensions User - Source -
Destination from the LANL authentication data. The back-
ground traffic is shown with gray and anomalies are high-
lighted in red. 2% of the original background traffic is shown.

Prior studies have explored statistical Poisson Matrix
Factorization (PMF) methods, based on recommendation
systems and Poisson p-values, to perform anomaly detection
[46, 50, 57]. In statistics, the Poisson distribution models the
frequency of event occurrences per unit time. The Poission
distribution with rate parameter 𝜆 > 0 models discrete
variable as shown in Equation (1). The rate 𝜆 is both the
mean and variance of the Poisson distribution.

𝑋 ∈ {1, 2, . . .} : 𝑝 (𝑋 = 𝑥) = 𝜆𝑥𝑒−𝜆

𝑥 !
(1)

Sanna Passino et al. used two bipartite graphs with the
dimensions User - Destination and User - Source, applied
PMF to detect anomalies, and extended their statisticalmodel
to incorporate covariates about users and computers [46].
Similarly, Volkovs et al. showed that a deep neural network
can learn to augment user preference data and alleviate the
problems of cold start [61]. Price-Williams et al. developed
a model that detected anomalous users via their historic
authentication times [50]. Turcotte et al. demonstrated that
Fisher p-value fusion can combine independent p-value
scores of user’s logon and process start events for anomaly detection [57]. We build on these existing anomaly
detection frameworks by combining their ideas with high-dimensional tensor factorization.

3.2 Tensor Factorization
Tensor factorization is a cutting-edge method for uncovering hidden patterns in data. Tensors are higher order
extensions of matrices [35]. Cyber event logs can naturally be encoded as tensors. For example, users authenticating
between two devices can be represented by a 3rd-order tensor with dimensions User, Source, and Destination,
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Fig. 3. Rank 𝑅 Canonical Polyadic Decomposition (CPD) of a tensor with dimensions User (𝑢), Source (𝑠), and Destination (𝑑).

where an index X𝑢,𝑠,𝑑 in this tensor represents the number of authentications that user 𝑢 performs, going from
source device 𝑠 to destination device 𝑑 . In this work, we use binary tensors, where the element X𝑢,𝑠,𝑑 is set to 1 if
user 𝑢 authenticates from source device 𝑠 to destination device 𝑑 at least once, and is set to 0 otherwise. Figure 2
shows such a tensor from the test period of the LANL dataset. We can extend this notation to include 𝐷 dimensions.
For a 𝐷 dimensional tensor, an index entry is denotedX𝑖1,...,𝑖𝐷 , where 𝑖1, . . . , 𝑖𝐷 ∈ [1 ≤ 𝑖1 ≤ 𝑁1, . . . , 1 ≤ 𝑖𝐷 ≤ 𝑁𝐷 ].
Following the multi-index notation, we represent a tensor index (i.e. coordinate of non-zero value) with i.
Tensor factorization decomposes high-dimensional data into lower-dimensional components (usually 2D factor

matrices), where the factor matrices carry the latent features in each tensor dimension. Specifically, we use a form of
non-negative tensor factorization called Poisson tensor factorization. We choose non-negative factorization because
our datasets are inherently non-negative (i.e., our datasets involve counts of event types, and a negative event count
would be impossible). Importantly, non-negativity requires the extracted latent features to be additive components
of the original data, which improves interpretability [37].
Previously, Dunlavy et al. used tensor factorization to perform temporal link prediction of future time steps

[25]. In their approach, the temporal profiles captured in the time dimension of a 3-dimensional tensor are utilized
as a weighting heuristic or forecasting basis. Differently, we use non-negative tensor factorization and directly
incorporate the latent temporal profiles in our link prediction under a statistical framework. Bruns-Smith et al.
originally applied Poisson tensor factorization in the cyber security domain [14], but they manually analyzed their
resulting factors to find malicious activity. While the authors successfully identified indicators of malicious incidents,
their manual analysis does not scale to large data. Our work leverages Canonical Polyadic Decomposition (CPD) to
extend existing Poisson matrix factorization models and thus automate ranking and scoring. Similarly, Kanehara et
al. used Tucker tensor decomposition [56] with thresholding over the components for automatic detection of botnets
in darknet traffic [30]. Outside the cyber domain, Bayesian Poisson Tucker tensor decomposition was previously
used by Schein et al. for modeling international relations [54].
CPD [28] is an important tool for unsupervised learning, feature extraction, and dimensionality reduction. By

definition, if a tensor can be written as a single outer product of vectors, it has rank 1. Any arbitrary tensor can
be decomposed as a weighted sum of rank-1 tensors, which is called Polyadic Decomposition. If the number
𝑅 of rank-1 tensors is minimal, then the decomposition is a CPD. Importantly, in the non-negative case, a best
rank-𝑅 approximation always exists [38], and it is almost always unique [51]. Usually, each factor is normalized
to sum to 1, and weight is absorbed by 𝛾𝑟 to achieve a unique solution. For example, an order 3 tensor X with
dimensions 𝑢, 𝑠, 𝑑 and shape 𝑁𝑢, 𝑁𝑠 , 𝑁𝑑 can be approximated by a sum of 𝑅 rank-1 tensors, each called a component.
Each component is encoded as the outer product of 3 factor vectors, 𝜃 (𝑢)

𝑟 , 𝜃
(𝑠)
𝑟 , 𝜃

(𝑑)
𝑟 , with lengths 𝑁1, 𝑁2, and 𝑁3,

respectively. Equation (2) shows the CPD tensor approximation, where ◦ represents vector outer product, and Figure
3 illustrates the equation.

X ≈ X̂ ≡
𝑅∑
𝑟=1

𝛾𝑟 · 𝜃 (𝑢)
𝑟 ◦ 𝜃 (𝑠)

𝑟 ◦ 𝜃 (𝑑)
𝑟 (2)
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Furthermore, we can write X̂ in KRUSKAL tensor format as X̂ ≡ M = ⟦𝛾 ; A(1) ,A(2) , · · · ,A(𝑑)⟧. Here
A(𝑑) = [𝜃 (𝑑)

1 , 𝜃
(𝑑)
2 , . . . , 𝜃

(𝑑)
𝑅

] ∈ IRR xNd is a matrix of 𝑅 latent factors for the dimension 𝑑 . We can let 𝑛𝑛𝑧 (XXX) be the
number of non-zero entries in X, and let Ω be the set of all entries in the tensor including the zeros, such that for
the sparse tensors 𝑛𝑛𝑧 (XXX) ≤ |Ω |. We can acquire |Ω | by taking the product of each dimension’s size as shown in
Equation (3).

|Ω | =
𝐷∏
𝑑=1

𝑁𝑑 (3)

The problem of selecting the optimal rank 𝑅 for a specific application is essential in finding low-dimensional
latent tensor representations. If we perfectly reconstruct the input tensor, our tensor factorization carries little
information about peer groups or other shared structures; if our rank is too low, we lose vital information. Zhado
et al. discussed this problem for CP decomposition, and introduced a tuning parameter-free probabilistic model
for automatic rank determination of incomplete tensors [65]. Truong et al. has also discussed this problem, and
introduced the Non-Negative RESCAL [55]. Minimal multi-rank in RESCAL is chosen to be the rank with low
relative error and high silhouette score. This technique was later used to discover the latent topics in a corpus via an
ensemble of frequency–inverse document frequency (TF-IDF) matrices by Vangara et al. [59], and a distributed
software package implementing the method was released [10, 11, 19]. Similarly, our model attempts to automatically
find the best rank on the LANL dataset so as to avoid arbitrary rank selection. Rather than RESCAL, we use
log-likelihood on held-out validation data to find the optimal tensor rank for link prediction and anomaly detection.
When computationally feasible (only for the LANL dataset), we performed automatic rank selection.
We compare the anomaly detection performance of the tensor with automatically discovered optimal rank to

an ensemble of tensors with different ranks. Ensemble tensor learning was first proposed by Kisil et al. [34].
The authors re-grouped the ensemble of latent factors from tensor decomposition to train classifiers, where each
decomposition carried particular hypotheses about the data. The trained models then performed majority voting
during classification to boost prediction accuracy by exploiting the idea of wisdom of the crowd. The ensemble
approach, with a probabilistic framework, has also been previously used to improve intrusion detection by combining
results from multiple ML algorithms [52]. Alternatively, in our work, we train an ensemble of tensors with different
ranks and apply p-value fusion over their predictions to capture the hypothesis carried by each rank.

4 MULTI-DIMENSIONAL ANOMALY DETECTION
Simultaneous extraction of latent features by tensor factorization enhances the detection of unusual activities by
making the system sensitive to different correlations between the dimensions. For example, we can train our models
to learn user patterns and daily/hourly periodicity jointly.
Our model is based on Poisson CPD. For a 𝐷-dimensional tensor with shape 𝑁1, . . . , 𝑁𝐷 , we model each element

as an independent draw from a Poisson distribution, where the rate 𝜆i is determined by a CPD of rank 𝑅:

XXXi ∼ Poisson (𝜆i) (4)

𝜆i =
𝑅∑
𝑟=1

𝛾𝑟

𝐷∏
𝑑=1

𝜃
(𝑑)
𝑟,𝑖𝑑

(5)

where 𝜃 (𝑑)
𝑟 is 𝑟 -th component in the 𝑑-th dimension (or factor).

During training, we learn latent factors to maximize the joint log-likelihood of all observed counts:

log 𝑃 (XXX) =
𝑁1∑
𝑖1=1

· · ·
𝑁𝐷∑
𝑖𝐷=1

((XXXi · log 𝜆i) − log Γ(XXXi + 1)) − Λ (6)
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where

Λ =

𝑅∑
𝑟=1

𝛾𝑟

[(
𝑁1∑
𝑖1=1

𝜃
(𝑑)
𝑟,𝑖1

)
· . . . ·

(
𝑁𝐷∑
𝑖𝐷=1

𝜃
(𝑑)
𝑟,𝑖𝐷

)]
(7)

and Gamma function

Γ(𝑛) =
∫ ∞

0
𝑥𝑛−1 · 𝜖−𝑥𝑑𝑥 (8)

Note that this log-likelihood function is efficient to compute on sparse data because the first two terms are 0,
whenever the countXXXi is 0. Therefore, the sum can be implemented efficiently by summing only over non-zero (i.e.
observed) counts. We use one of the most efficient algorithms to optimize this sparse Poisson likelihood function:
CANDECOMP-PARAFAC Alternating Poisson Regression (CP-APR), which minimizes the Kullback–Leibler
divergence with a non-negativity constraint via a modified multiplicative update (MU) algorithm [20].

4.1 Rank Selection
CPD is a non-convex problem, where it is assumed that the tensor rank is known. We use log-likelihood Equation
(6) evaluation on held-out time periods (i.e. validation data) to find the rank that best predicts future user actions.
We fit tensor factorization using the training set on all ranks from 1 to 100 (with a step size of 5 between 10-100),
and evaluate log-likelihood on the validation set. The rank with the highest log-likelihood is chosen as 𝑅 during
our subsequent training and testing procedures over the dataset used for identification of compromised credentials.
After the rank selection, we combine the train and validation sets to fit the final model. On the other datasets, we
choose the rank based on the GPU memory space availability.

4.2 Poisson Rate Smoothing
Because tensors representing cyber security logs are extremely sparse, we encounter numerical underflow when
estimating tensor factorization. In order to alleviate this problem, we inflate our binary entries such that the mean
value in the tensor is approximately 1:

XXXi =

∏𝐷
𝑑=1 𝑁𝑑

𝑛𝑛𝑧 (XXX) (9)

Additionally, because of the sparse structures of these tensors, many of the estimated factors are also sparse (i.e.
have a large number of zero values). Zero values in the factors result in estimated Poisson rates of 0 during the testing
phase; thus, we need to regularize our estimation procedure. We do this by estimating a rank-1 factorization and a
rank-𝑅 factorization of the training tensor, where the optimal 𝑅 is computed by maximizing validation log-likelihood
or it is chosen to be the largest 𝑅 where the tensor can still fit on GPU memory. Since the sum of counts across any
axis of our tensor is non-zero, we are guaranteed to have non-zero factors in our rank-1 factorization. We use this
fact to regularize our estimation of the Poisson rate 𝜆i based on the rank-1 rate 𝜆1i and the rank-R rate 𝜆

𝑅
i :

𝜆i = 𝑎 · 𝜆1i + (1 − 𝑎) · 𝜆𝑅i (10)
Here 𝑎 is used as a mixing proportion to select the amount of information to be used from the rank-1 factorization.

Throughout our experiments, we chose 𝑎 = 0.1 heuristically as a type of smoothing. Since rank-1 factorization would
be under-fitting the solution, we choose 𝑎 to be a small value such that our solution contains a higher proportion of
the rank-𝑅 factorization. For many problems, this parameter could be optimized via cross-validation, but we find
that the performance is fairly stable for lower values of 𝑎 as shown in Figure 4a and Figure 4b.
We perform anomaly detection by computing the p-value of each observed count during our test period. The

p-value is the probability of observing a count at least as extreme as the observed value, under the model learned
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Fig. 4. ROC-AUC (a) and PR-AUC (b) scores as a function of the mixing proportion for rank-1 decomposition (𝑎 from Equation
10) for the LANL authentication tensors. ROC-AUC and PR-AUC scores are fairly stable for lower values of 𝑎, and begin to drop
as more information from rank-1 decomposition is used.

during training time2: 𝑃 (𝑋i ≥ 𝑥 | 𝜆i). That is, our null hypothesis is that a user’s behavior will follow our previously
learned activity profile. A lower p-value is an indication of an anomalous event.

4.3 P-value Fusion over an Ensemble of Tensors
Choosing an optimal tensor rank is necessary to find the decomposition that best describes the latent space in the
data; we lose crucial information if the rank is too low (under-fitting), and unwanted noise is extracted if the rank is
too high (over-fitting) [59]. Therefore, rank selection is an important open research area that is widely studied. We
use log-likelihood to find the optimum rank for the LANL dataset in this paper. Additionally, in our analysis, we
show that the knowledge extracted from decomposition with different ranks can be combined to enhance prediction
accuracy.
Tensor decomposition with different ranks extracts distinct hidden features of the data, each capturing unique

patterns. Therefore, each rank carries a certain hypothesis about the underlying information. We use p-value
fusion techniques to unify these extracted patterns to improve our decisions. We define an ensemble of tensors
to be a group of tensor decomposition of rank 2 through 𝑅, such that 𝐺MMM = {MMM2,MMM3,MMM4, . . . ,MMM𝑅}. Each tensor
in this ensemble follow the smoothing and regularization steps outlined in Section 4.2. Using the ensemble of
tensors, we can calculate group of Poisson 𝜆 parameters for each link (or tensor entry) i, in the test set, such that
𝐺𝜆,i = {𝜆2i , 𝜆

3
i , 𝜆

4
i , . . . , 𝜆

𝑅
i }. With 𝐺𝜆,i, we can calculate the group of p-values for the non-zero value on each link i,

𝐺𝑝,i = {𝑝2i , 𝑝
3
i , 𝑝

4
i , . . . , 𝑝

𝑅
i }. These p-values are then fused with Fisher Equation (11), Harmonic mean Equation (12

where𝑤𝑟 =
1

𝑅 − 1
), and Arithmetic mean Equation (13) methods to get a combined solution:

𝑋 2
2𝑅i

∼ −2
𝑅∑
𝑟=2

𝑙𝑛(𝑝𝑟i ) (11)
◦
𝑝i =

∑𝑅
𝑟=2𝑤𝑟∑𝑅
𝑟=2

𝑤𝑟

𝑝𝑟i

(12) ◦
𝑝i =

1
𝑅 − 1

𝑅∑
𝑟=2

𝑝𝑟i (13)

Note that each method for p-value fusion is based on statistical assumptions that are invariably violated to some
extent in practice. For instance, Fisher p-value fusion (Equation 11), assumes that the p-values to be fused are
independent, which is clearly not the case when fusing tensor decomposition results over different ranks for the

2This p-value can be computed by the Poisson survival function.
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same data. Thus, we experimentally evaluate multiple p-value fusion methods, providing empirical evidence to
inform the choice of p-value fusion method.

4.4 Scoring
To better understand the performance of our methods, we score the anomaly detection results both based on link
and event prediction, and consider the cases when the system cannot produce a decision for a particular entity based
on the information collected at training time, for example for new users or devices on the network. We also apply
p-value fusion technique over the tensor dimensions to identify anomalous entities such as a single compromised
host or user.

4.4.1 Accounting for Unknown Instances: When we construct our tensors, we create mappings of each categorical
or numerical instance to certain indices in the dimensions. These mappings are created using the information in the
training set since it is impossible to know the data that we will see in the test set. This method is analogous to a
real-world scenario where the tensors are built using the data at hand (training set) and used to evaluate new logs in
the future (test set). With this setup, it is possible to encounter an entity that was not seen previously; such that it
does not have a corresponding index mapping in the tensor. In this case, we cannot evaluate an event associated
with that entity. For example, a new user might be added to the network after the tensor is built. Since we cannot
evaluate events for this user, they would be missed by our system, which is equivalent to classifying them as benign.
In a production environment, our system would be periodically updated to carry the most recent information;

however, it is still important to account for such cases when evaluating the anomaly detection performance of our
methods because we want to penalize the system for each anomalous activity that we could not detect. This is
accomplished by adding back all the skipped instances during scoring and setting their predicted labels to benign,
or equivalently to a value that is greater than the maximum p-value for the scored activities.

4.4.2 Event Prediction vs. Link Prediction: Event scoring accounts for each observed action (e.g. log event)
individually3. The benefit of event scoring is that it rewards the system for each benign action that is not detected,
and penalize it for each malicious activity that is not detected. For example, if a stolen credit card is used multiple
times to purchase goods, we would like to reward the system for detecting each unauthorized transaction. The
sample log lines in Figure 5 contains 3 individual events.

...
U:User000089 S:Comp703328 D:ActiveDirectory H:1 D:0 s:Fail
U:User000089 S:Comp703328 D:ActiveDirectory H:1 D:0 s:Fail
U:User000089 S:Comp703328 D:ActiveDirectory H:1 D:0 s:Success
...

Fig. 5. Example event logs for anonymized user User000089 from LANL authentication dataset. User000089 successfully logs in
to Active Directory from the source device Comp703328 on the third try at 1am (H:1) on a Monday (D:0).

Link scoring corresponds to evaluating each unique log (coordinate of non-zero value i) within the test set, similar
to distinct edges in a graph. This is equivalent to rewarding the system once for each day during which it detects a
stolen credit card number (assuming the card is not automatically disabled upon the first detection).
The authentication logs in Figure 5 show 2 unique links for the 6 dimensional tensor: (User000089 - Comp703328

- ActiveDirectory - 1 - 0 - Fail) and (User000089 - Comp703328 - ActiveDirectory - 1 - 0 - Success). Differently,
there is a single unique link for a 3 dimensional tensor: (User000089 - Comp703328 - ActiveDirectory).

3Event scoring can be efficiently implemented by setting sample weights, e.g. using Scikit-learn’s sample_weight parameter when computing
the ROC and PR curves [48].
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Table 1. Tensor details and test set p-value statistics for anomalous and benign events

Tensor Details Anomaly p-value Benign p-value
Dataset & Tensor Dimensions Size % Non-Zero Decomposed Rank Mean Std Count Mean Std Count

LANL US 11260 x 15055 2.57 × 10−4 20 .1993 .3253 76 .8945 .2421 31,241
LANL UD 11260 x 4796 1.51 × 10−3 20 .6399 .3315 117 .9489 .1829 69,596
LANL USDs 11260 x 15055 x 4796 x 2 1.02 × 10−7 4 .2721 .4090 119 .9575 .1677 125,166
LANL USDHs 11260 x 15055 x 4796 x 24 x 2 3.04 × 10−8 5 .1062 .2621 137 .9801 .1215 955,808
LANL USDHDs 11260 x 15055 x 4796 x 24 x 7 x 2 1.60 × 10−8 45 .0175 .0765 138 .9946 .0664 3,513,527
UGR’16 Neris 3&2 Octet Src&Dest IP Mapping 7453770 x 65536 x 24 x 7 7.32 × 10−7 8 .0465 .1998 3,001 .9717 .1516 20,117,426
UGR’16 Neris 20-Bits IP Mapping 655360 x 522429 x 24 x 7 1.04 × 10−6 10 .0262 .1425 6,381 .9659 .1478 23,383,989
UGR’16 Neris 24-Bits IP Mapping 3865526 x 848382 x 24 x 7 1.09 × 10−7 7 .1464 .3008 2,369 .9822 .1034 21,847,564
UGR’16 Neris 4 Character IP Hash Mapping 65536 x 65536 x 24 x 7 8.04 × 10−5 10 .0292 .1246 8,381 .9447 .2065 23,189,409
UGR’16 Neris 5 Character IP Hash Mapping 1048487 x 663889 x 24 x 7 5.16 × 10−7 7 .0330 .1599 5,781 .9732 .1262 23,250,847
UGR’16 Neris 6 Character IP Hash Mapping 7477572 x 1019015 x 24 x 7 4.72 × 10−8 6 .2813 .4315 495 .9857 .0922 19,481,318
UGR’16 Spam E-Mail 55287 x 65536 x 24 x 7 2.66 × 10−5 20 .3814 .2165 2,495 .9791 .1220 1,909,544
PaySim Credit Card 100 x 5 x 24 x 7 x 100 x 100 9.00 × 10−6 25 .6826 .4387 4,391 .9998 .0058 1,224

4.4.3 Entity Prediction: To make operational use of the anomaly scores produced by our system, we need to
summarize these results into the detection of malicious entities, such as stolen user credentials, compromised
bastion hosts, or stolen credit card numbers. We achieve this summarization using p-value fusion of dependent
p-values over the dimensions of the tensor [62]. This fusion is accomplished by taking the harmonic mean over all
p-values, including the p-values for unobserved events (which are, by definition, 1). Note that fusion can either
produce a ranked list of entities (e.g. users, source devices, destinations, days, etc.) or reduce to a lower-dimensional
set of events (e.g. user-source and user-destination interactions, etc.) using:

◦
𝑝𝑇 =

∏D−T
𝑑

𝑁𝑑∑D−T 1
𝑃 (𝑋i ≥ 𝑥i)

(14)

where T is set of target dimensions that we want to fuse down to, D is the set of all dimensions, and 𝑁𝑑 is the size
of dimension 𝑑 .
Finally, we find that fusing the ranked lists produced by multiple multi-dimensional tensors allows us to identify

multiple complementary aspects of anomalous behavior, and thus achieve better results than identifying anomalies
with any one tensor alone. For fusing ranked lists, we use mean reciprocal rank (MRR), where rank𝑖 is the rank of
the entity in the 𝑖 th ranked list [22]:

MRR =
1
|𝑁 |

|𝑁 |∑
𝑖=1

1
rank𝑖

(15)

5 DATASETS
We select three diverse, cyber-relevant datasets to test our methods, in order to demonstrate the generality and novelty
of our approach. We show that our methods generalize to different anomaly detection problems by naturally learning
activity patterns from past behavior and detecting deviations from these learned behavior profiles. Specifically,
we study three types of data with unique properties: host authentication events, netflow records, and banking
transactions. These datasets are used for four tasks, detecting compromised hosts and users, botnets, spam e-mails,
and fraudulent credit card transactions. In this section, we describe each of the datasets, provide the relevant statistics
of the data, and explain our pre-processing steps.
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Table 2. LANL Authentication dataset attribute counts and selected days for dataset splits

Set User Source Destination Benign Events Anomalous Events Fail % Days
Train 11,118 14,705 4,698 166,712,680 0 2.13 1-48
Validation 9,181 10,778 3,508 28,013,171 0 12.68 49-56
Train + Validation 11,260 15,055 4,796 194,841,640 0 1.82 1-56
Test 10,165 12,526 4,176 91,547,561 179 3.88 57-82

5.1 Los Alamos National Laboratory (LANL) Authentication Dataset
Detailed and diverse datasets at the enterprise scale are rare in the cyber security domain due to privacy and
security concerns. Turcotte et al. introduced the publicly available Unified Host and Network Dataset4 to address
this critical need [58]. The dataset contains host events and netflow logs collected over a 90-day period at Los
Alamos National Laboratory (LANL), including red team activity that occurred from days 57 to 82. This red team
activity provides ground truth information for the evaluation of anomaly detection techniques. Attributes in the
dataset are anonymized, but the dataset curators evaluated the anonymization with a small set to ensure that entities
can be joined across the dataset, thus ensuring that the collection remains meaningful for research purposes.
While the LANL dataset contains both network and host data, our work focused on a subset of the host data.

We base our work on the 3.5 million daily average user authentication events collected by the Windows Logging
Service (WLS) at endpoint devices in the LANL dataset. We filter the dataset to include only EventID 4624 and
4625 which are collections of various types of successful and failed logon records. In particular, we limit LogonType
to Interactive, Network, Batch, Service, Unlock, NewCredentials, RemoteInteractive, and CachedInteractive5. We
disregard events performed by local and system processes (instances where the UserName ends with “$”) to
minimize the presence of automated activity. We extract the following attributes from the remaining authentication
data, to be used as dimensions in our tensors:

• UserName, user which initiates the log-on.
• Source, device where the authentication originates.
• LogHost, destination device to be authenticated to.
• EventID, fail or success status of the authentication.
• Time, timestamp of the event.
Additionally, daylight savings time occurs at day 42 in the LANL dataset, shown in Figure 1. As a result, we

increment hours by 1 after day 42 at 2:00 am to normalize the time. Finally, we drop any data instances with missing
values. We split all extracted data instances by time into training, test, and validation sets. The validation set is used
in rank selection. The attribute sizes and day distributions for each split are shown in Table 2.
We build three separate binary tensors with dimensions User - Source - Destination - status (USDs), User -

Source - Destination - Hour - status (USDHs), and User - Source - Destination - Hour - Day - status (USDHDs). We
also build two matrices User - Source (US) and User - Destination (UD)6. The status indicates failed or succeeded
logon activity. The Day dimension is day of the week (Monday through Sunday), and Hour is hour of the day (0
through 23). User represents the account which initiates the authentication event (e.g., UserName), Source and
Destination are the origin and target devices of the log-on event (Source and LogHost, respectively, in our data).
Tensor entries are binary: an entry of 1 indicates the presence of at least one event. Table 1 shows statistics for each
tensor.

4The LANL dataset is available at https://csr.lanl.gov/data/2017/.
5Detailed attribute descriptions can be found in [58].
6Matrices with the User, Source, and Destination dimensions were first used by Turcotte et al. [57], and Sanna Passino et al. [46].
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Table 3. UGR’16 attribute counts and selected weeks for dataset splits

Set Source IP Destination IP Benign Events Anomalous Events Number of Weeks
Neris Botnet Train 9,900,350 1,050,838 1,326,645,343 0 14
Neris Botnet Test 3,471,677 678,513 405,532,210 50,185 5
Spam E-Mails Train 124,762 2,473,478 107,084,432 22,868,251 14
Spam E-Mails Test 53,993 1,222,161 30,397,634 36,159,948 5

Authentication events result in immensely sparse problems, where a large fraction of the tensor is composed of
zeros. This is common for cyber data because the majority of network resources communicate with a only small
set of devices or users. Zero values that comprise the majority of the tensor do not need to be stored in memory,
allowing us to deviate from dense tensor representation. Instead, sparse tensors can be stored as a list of coordinates
and a corresponding list of non-zero values, known as the COOrdinate COO format. We store coordinates of the
non-zero values with element-to-index mappings of the categorical dimensions. Entities that do not exist in the
training data are not mapped in the corresponding test set; however, we also evaluate our system for each skipped
unknown entry as described in Section 4.4.1.

5.2 UGR 16 NetFlow Dataset
The UGR’16 dataset7, was developed by Fernandez et al. to evaluate cyclostationary intrusion detection systems (i.e.
IDSs that analyze events based on long-term temporal activity patterns such as day/night, weeks, and months) [41].
While the LANL dataset contains the authentication event logs originated at the endpoint devices, the UGR’16
dataset is made up of anonymized NetFlow events collected at the border routers of a Tier 3 Internet Service
Provider (ISP). Several properties of this dataset including the real 19-week long background network traffic make
it an ideal candidate for a second (and third) realistic application of our methods.
The background traffic in this dataset originates from different companies and a variety of applications. Thus, it

represents network traces from a wide range of real Internet user profiles. Heterogeneous network traffic introduces
a real-world challenge to the evaluation of our methods. Another important distinction of this dataset is its size,
reaching up to 1.3 billion events in the 14-weeks long training period as shown in Table 3, further emphasizing the
importance of speed and memory efficiency of tensor factorization methods.
We use the last 5 weeks as the test set, which includes both the synthetic and real attack traffic. Controlled attack

traffic is generated with modern techniques and tools by the curators to address the need for datasets with up-to-date
incidents. Meanwhile, the real attack traffic is labeled via anomaly detection tools based on PCA and One-Class
Support Vector Machine (OCSVM), and cross-referencing open-source threat intelligence feeds for blacklisted IP
addresses. Importantly, the background traffic is not proven to be benign. This means that it is possible to have
unlabeled malicious activities in both the training and test period making our reported scores relatively inaccurate.
However, we see this fact as an added benefit since it closely resembles a real-world scenario where clean data is
not guaranteed.
We ignore all of the known malicious incidents during the training period and extract two types of network traffic

from the dataset targeting Botnet and SPAM e-mail detection. Each of the binary tensors that are built using this
dataset are represented in sparse format and has the dimensions Source IP -Destination IP - Hour - Day. The first
two dimensions, Source IP and Destination IP represent the source and destination IP addresses of the devices from
network activity. Temporal dimensions Hour and Day follow the same day/hour format as the tensors from the
LANL dataset. Similar to the LANL dataset, the entities that are encountered for the first time during the test period
are skipped.

7The UGR’16 dataset is available at https://nesg.ugr.es/nesg-ugr16/.
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Table 4. IP mapping schemes used in the UGR’16 dataset for the Source IP and Destination IP dimensions on the tensors with
the dimensions Source IP - Destination IP - Hour - Day.

Dataset & Tensor Source IP Destination IP
UGR’16 Neris 3&2 Octet Src&Dest IP Mapping Lower 3 octets Lower 2 octets
UGR’16 Neris 20 Bits IP Mapping Lower 20 bits Lower 20 bits
UGR’16 Neris 24 Bits IP Mapping Lower 24 bits Lower 24 bits
UGR’16 Neris 4 Character IP Hash Mapping Lower 4 characters of the MD5 hash Lower 4 characters of the MD5 hash
UGR’16 Neris 5 Character IP Hash Mapping Lower 5 characters of the MD5 hash Lower 5 characters of the MD5 hash
UGR’16 Neris 6 Character IP Hash Mapping Lower 6 characters of the MD5 hash Lower 6 characters of the MD5 hash
UGR’16 Spam E-Mail Lower 2 octets Lower 2 octets

Fig. 6. Sections of an IP address for
IPv4 Class C subnet. The lower two
octets are used together as the subnet
and host identifier.

5.2.1 Neris Botnet: The first task we tackle using the UGR’16 dataset is
detecting the Neris Botnet activity hidden in benign HTTP traffic. Hosts
infected with Neris sends SPAM and performs Click Fraud [41]. During the
pre-processing, we keep the connections where the destination port is 80
(HTTP traffic). This way, our goal is to identify the 61 bots (i.e. compromised
devices) that establish an HTTP connection to one of the 70 Command and
Control devices. The training period is utilized to learn the expected benign
traffic (background traffic) over port 80, such as website visits, and the test
period is filtered to contain the connections labeled both background and
nerisbotnet.
We map the IP addresses to tensor indices targeting two outcomes: lowering the tensor size, and grouping the IP

address communities based on both the network and host identifiers. Using an IP address directly as the tensor
dimension would not scale in a production system. Because an IP address contains a total of 32-bits, the size of the
tensor dimension for the IP address could grow up to 232. This could cause memory space and computation speed
issues as the new IP addresses are introduced to the system. Therefore, we apply different mapping techniques and
measure each of their performance when detecting anomalies.
An IP address contains 4 sections, each of which is 1 octal or 8 bits. In the Class C subnet, the upper 3 octets are

the network field and the lower octal is the host address field. This is also illustrated in Figure 6. We target different
lower number of bits that contain both the network and host field identifiers during mapping. This mapping forms
groups for different physical locations in the network. The mapping technique is also used by Kanehara et al. to
build a tensor to analyze the botnet patterns in the latent components extracted using the Tucker decomposition [30].
Differently, they map the upper 16-bits of the IP addresses in their tensor, which misses the information about the
host device. We extend this method to map different numbers of lower bits from the IP address. We further extend
this mapping method by hashing the IP addresses to analyze the performance of the resulting IP groupings. We
build 6 tensors with different mapping schemes for the first two dimensions Source IP and Destination IP, where the
tensor is named based on the mapping scheme, as shown in Table 4. Note that the hashing-based mapping schemes
will best extend to 128-bit IPv6 addresses.

5.2.2 Spam E-Mail: We use SMTP traffic in the UGR’16 dataset to identify SPAM e-mails. While the Neris traffic
was synthetically injected in the dataset, all of the SPAM e-mails that are labeled by the dataset curators are real
attack traffic and include major SPAM campaigns. During the parsing, only the connections to source port 25 are
kept. Similar to the Neris pre-processing step, the training set only contains the events labeled as background to
learn the normal SMTP traffic patterns. The test set contains both the background and anomaly-spam connections
to detect 466 devices targeted by 15 attackers with nearly 36 million SPAM messages, as shown in Table 3. We built
a single tensor and used the lower 2 octets of the IP addresses to map the first two dimensions.
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5.3 PaySim Banking Transaction Dataset
Banking is another field that faces open-source data scarcity due to privacy concerns. Public credit card transaction
datasets are commonly presented in PCA transformed format. This format extracts the latent features of the data
and enables the analysis of methods such as classification, while preserving the privacy of the original resource.
However, the abstracted data loses interpretability and cannot be used in graph-based analysis methods.
Lopez-Rojas et al. developed PaySim, a synthetic transaction generator in response to address the unavailability

of public data [40]. Given real transaction logs, PaySim can synthesize a new dataset that carries the statistical
properties of the original dataset. The generated dataset hides the private information of actual transactions while
keeping the analytic value by basing the synthetic instances on real transactions. We use the mobile banking dataset
Synthetic Financial Datasets For Fraud Detection8 that is based on real transaction data provided by Ericsson to the
dataset authors [40].
The data includes 5 types of banking transactions performed between 6,353,307 source and 2,722,362 destination

accounts over 743 hours. We use the first 600 hours as the training set to learn the benign/normal 6,252,434
transactions. 6,613 fraudulent events in the training period are moved to the test set for performance evaluation.
After moving the anomalies, the test period contains a total of 101,973 benign and 8,213 fraudulent transactions.
With this split, we build an order 6 tensor with the dimensions Amount - Type - Hour - Day - Origin Balance

Error - Destination Balance Error. The Amount dimension is the total dollars associated with the transaction. Type
is a categorical dimension mapped from one of the classes: CASH_OUT, PAYMENT, CASH_IN, TRANSFER, or
DEBIT. Hour and Day are the temporal dimensions for the hour of the day and day of the week. The last two
dimensions represent the transaction error rate, inspired by the popular Kaggle kernel written for this dataset by
Joshua [29], calculated by subtracting the new and the old balance in the account. Finally, the numerical values are
mapped to the bins in the dimensions: Amount, Origin Balance Error, and Destination Balance Error, where the
bin range is between 0 and 99.

6 EXPERIMENTS AND ANOMALY DETECTION RESULTS
We conducted experiments targeting two main tasks: (1) detecting anomalous events, and (2) detecting anomalous
entities. Anomalous events are analogous to log messages. For example, a single anomalous User, Source,
Destination, Hour, and Day combination. As described in Section 4.4.3, anomalous entities are higher-level
abstractions, discovered by finding commonalities between multiple anomalous links, such as a single malicious
user or a single malicious device.
Our model does not train against any labels for malicious activity. Following common practice in user behavior

analysis, we assume that the vast majority of events during the training period are benign, and observations during
the training period are used to establish a baseline activity profile. Labels were used for the Neris botnet, SPAM
e-mail, and credit card fraud tensors during the training time to remove the malicious activity. This is analogous to a
security team removing known anomalies from the training data when using our model in a production environment.
Incident response teams can use our model as a streaming detector, where daily activities are scored against an
existing model, and a batch re-training procedure is undertaken repeatedly to refine the model.
We quantitatively evaluate our detections using the area under the receiver operating characteristic (ROC)

curve (ROC-AUC), which evaluates the extent to which the model assigns lower p-values to red team events than
benign events, and precision-recall curve (PR-AUC), which essentially measures the model’s sensitivity to false
positives. In addition, we compare our results to prior anomaly detection research that used the same datasets
[15, 24, 42, 44, 46, 63].

8The PaySim dataset is available at https://www.kaggle.com/ntnu-testimon/paysim1/.
∗The score is reported on a manually balanced set; therefore, not directly comparable to our result.
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Table 5. Comparison with state-of-the-art prior methods for anomaly detection using ROC-AUC. Across all four tasks studied, we
find that our method compares favorably with unsupervised baselines. We provide a best effort to fairly compare our results in
terms of event and link prediction with and without skipped instances. A check-mark (✓) under the Events column indicates
that the prior research evaluated their method over each event log. In contrast, an X mark (✗) is used if the other work did not
consider the particular scoring paradigm. A check-mark under the Links column means the method was evaluated when detecting
anomalies over unique links (Section 4.4). We place a check-mark under the Skips column if the evaluation considered the
skipped instances during testing time. Not applicable (or NA) is used if the type of scoring does not apply to a particular method.
We use ? if the information was not clearly communicated by the authors, and thus we report it to the best of our understanding.

Scoring Their Result Our Result
Dataset & Target Events Links Skips Method Num. Features Reference Score Tensor Score

UGR’16 Neris Botnet ✓ NA ? PCA (semi-supervised) 11 [15] .884 Neris 4 Character IP Hash Mapping .998
UGR’16 Neris Botnet ✓ NA ? Random Forest (supervised) 132 [42] .961 Neris 4 Character IP Hash Mapping .998
UGR’16 Neris Botnet ✓ NA ? Variational Autoencoder 53 [44] .936 Neris 4 Character IP Hash Mapping .998
UGR’16 Neris Botnet ✓ NA ? Gaussian Based Thresholding 53 [44] .970 Spam E-Mail .966
UGR’16 SPAM E-Mails ✓ NA ? Variational Autoencoder 53 [44] .908 Spam E-Mail .966
UGR’16 SPAM E-Mails ✓ NA ? Random Forest (supervised) 132 [42] .857 Spam E-Mail .966
UGR’16 SPAM E-Mails ✓ NA ? PCA (semi-supervised) 11 [15] .79? Spam E-Mail .966
LANL Auth. (UD) ✗ ✓ ✗ Poisson Matrix Factorization 2 [46] .902 USDs .956
LANL Auth. (US) ✗ ✓ ✗ Poisson Matrix Factorization 2 [46] .863 US MRR .952
PaySim Credit Card ✓ NA NA L-SVM (supervised) 6? [24] .978∗ Credit Card .815
PaySim Credit Card ✓ NA NA Ensemble of DBNs (supervised) 5 [63] .961∗ Credit Card .815

6.1 Anomalous Activity Detection
We demonstrate the value of our anomaly detection methodology through two specific evaluation tasks: (1)
comparing tensor-based anomaly detection with prior supervised and unsupervised learning approaches, (2)
exploring the performance of our methods for link and event prediction with and without skipped instances.

6.1.1 Improved Detection: Wecompared our tensor-based anomaly detectionmethodswith state-of-the-art baselines
on each of our datasets. Table 5 demonstrates that our detection performance, as evaluated using ROC-AUC,
matches or surpasses most of the baselines. This comparison includes state-of-the-art supervised learning detection
systems, demonstrating surprisingly strong performance for our unsupervised learning method. The experiments
demonstrate that our tensor factorization model can identify anomalies across multiple modalities and that adding
dimensions to the analysis improves the learning of detailed activity profiles. We detect anomalous events by
calculating a p-value for each element in the observed tensor. Table 1 shows statistics for the p-values inferred
across anomalous and benign links. Anomalous links have substantially lower average p-values than benign events
across all the tensors, which shows that our model discovers meaningful anomalies in an unsupervised manner.
Because the LANL authentication dataset has been used in anomaly detection via matrix factorization methods
previously [46, 50, 57], we can use the prior work as a reference point in our results. Therefore, we specifically look
at the authentication tensors USDs, USDHs, and USDHDs to analyze the added benefit of using tensors in user
behavior analysis. We also look at two matrices, US and UD, that are factorized using pyCP_APR.
When we move from the tensor USDs to tensors USDHs, and USDHDs we add dimensions representing the

hour of the day and the day of the week to consideration. Adding the temporal dimensions to the tensor decreases
the average p-values for red team events and increases p-values for benign events. Simultaneously, the standard
deviation of the p-values drops when the new dimensions are added to the tensor. This result indicates that learning
the temporal characteristics of the connections jointly with the peer structure connecting users and their devices
enhances detectability. This time-based anomaly detection is novel within a joint statistical framework, and greatly
enhances capabilities in applications such as insider threat detection.
Previous work that applied non-negative matrix factorization (NMF) detected anomalies using only two

dimensions at a time, such as a User-Destination pair [46]. Two-dimensional link prediction methods cannot extract
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(a) ROC (b) PR

Fig. 7. ROC (a) and PR (b) curve for the LANL authentication tensors with increasing dimension. ROC curve shows that increasing
dimensions improves overall ranking of red team events. PR plot highlights the cost of higher false positive rates on red team
event detection. Link scoring is performed, and skipped instances are not accounted for.

the multi-faceted details of a user’s activity profile. For instance, detection of anomalies via User-Destination
dimensions alone will miss a malicious event if the only abnormal characteristic of the connection is the Source of the
authentication event. Using tensors, we jointly learn activity profiles that include all dimensions of a user’s behavior,
and our experimental results show that the detection improves, with a minimal increase in the computational cost,
for tensors with up to 6 dimensions.
Figure 7a shows that adding dimensions improves the ranking of links created by the red-team events within

the full list of links observed on the network. However, ROC curves for each tensor cannot be compared directly
due to the differing number of benign links. Figure 7b shows that our detections are sensitive to class imbalance.
Although we see an improvement in PR-AUC going from US and UD to USDs, there is an increased false positive
rate for the tensors that also include temporal information. For example, with a p-value threshold of 0.001, the USDs
tensor identifies 41 of the 119 anomalies, while falsely classifying 128 out of 125,285 links. With the same p-value
threshold, the USDHDs tensor can detect 108 of the 138 red team links while falsely classifying 3,483 out of nearly
3.5 million links. The insight that lower-dimensional tensors yield better performance, when evaluated in terms of
false positives, leads us to develop our anomalous entity detection method to reduce the workload for analysts. We
discuss the entity detection in Section 6.2.
While figures 7a and 7b show the scores when predicting links and not accounting for the skipped instances,

Figures 8a and 8b display the scores for the same tensors on event prediction with skipped instances. Here we notice
a drop in performance since we penalize the model for each of the skipped anomalies (i.e. the anomalies with any
categorical features that we encounter for the first time in the test set).

6.1.2 Link and Event Prediction with and without Skipped Instances: We report our results both when scoring each
individual cyber event log (event prediction), and each unique tensor entry for the events (link prediction). Both of
these evaluation methods provide different insights into our results. Link prediction allows us to directly compare
the performances of tensors with different dimensions, and to the prior work that used matrices. It also allows us to
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(a) ROC (b) PR

Fig. 8. ROC (a) and PR (b) curves for the LANL authentication matrices and tensors with event scoring and accounting for skips.

conceptually understand the anomaly detection performance of each tensor individually. For example, if we detect
an anomaly once, we do not need to reward the system for detecting the same connection multiple times. However,
we also need to penalize the system if we miss each individual malicious communication. Event prediction provides
insights into how well our method would perform in a production environment when blocking each individual
malicious connection, since every undetected communication between the compromised host could correspond
to loss of more information. Additionally, we consider the cases where it is impossible for the system to provide
information for an entity, and thus skips scoring an event. This occurs when we encounter an entity during the test
period for the first time, causing it to fail to map to an index.
Table 6 shows the number of anomalous and benign skipped links and the total number of occurrences (event

count) in the test set for each tensor. Table 7 gives a comprehensive summary of each tensors’ performance, and the
matching metric is compared to prior research in Table 5.
The first point to note in Table 6 is that although the number of skipped links differ for the authentication tensors

USDs, USDHs, and USDHDs, the number of occurrences of these links remain the same. This happens because
categorical mapping was used in the first three dimensions, and the difference between these tensors is the temporal
dimensions. Therefore, we observe additional unique links as we increase the number of dimensions and the
event count remains the same. The Credit Card tensor contains no skip counts because only the transaction type
dimension was mapped categorically, and the training set contains all possible transaction types. All numerical
dimensions across all datasets we considered map to a valid index because they were binned. Neris 5 Character IP
Hash Mapping tensor missed nearly 36 thousand botnet connections due to failed mapping. Meanwhile, Neris 6
Character IP Hash Mapping skipped 49 thousand events; therefore, our event scoring that accounts for the skipped
instances will penalize this mapping scheme significantly more. Note that the number of skipped events can be
greater for some mappings, even when the number of skipped links is lower. This occurs due to the difference in the
total number of links. Finally, Neris 4 Character IP Hash Mapping contains no skips during the test period. This
likely occurs because 4 characters extracted from the hash of the IP address cover all possible IP addresses due to
the increased collision rate (i.e. all addresses map to an index).
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Table 6. Tensor link and event skip counts for anomalies and benign instances

Anomaly Skips Benign Skips
Dataset & Tensor Skipped Links Total Num. of Occurrences (Event) Skipped Links Total Num. of Occurrences (Event)

LANL US 8 13 2,692 985,364
LANL UD 13 55 2,264 269,362
LANL USDs 13 15 8,428 990,531
LANL USDHs 13 15 38,205 990,531
LANL USDHDs 13 15 91,118 990,531
UGR’16 Neris 3&2 Octet Src&Dest IP Mapping 450 32,554 489,209 59,344,373
UGR’16 Neris 20-Bits IP Mapping 200 13,000 16,055 3,372,841
UGR’16 Neris 24-Bits IP Mapping 212 38,212 211,344 32,669,071
UGR’16 Neris 4 Character IP Hash Mapping 0 0 0 0
UGR’16 Neris 5 Character IP Hash Mapping 200 35,600 31,148 6,185,934
UGR’16 Neris 6 Character IP Hash Mapping 166 49,030 469,466 69,831,846
UGR’16 Spam E-Mail 65 763 16,061 116,535
PaySim Credit Card 0 0 0 0

Table 7. Tensor anomaly detection performance for event and link prediction with and without skipped occurrences

With Skips Without Skips
Event Score Link Score Event Score Link Score

Dataset & Tensor ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC

LANL US .8361 .0802 .8618 .1473 .8946 .0859 .9439 .1625
LANL UD .8267 .0108 .7487 .0079 .8264 .0108 .8246 .0085
LANL USDs .9152 .0448 .8851 .2127 .9945 .0487 .9769 .2359
LANL USDHs .9191 .0017 .9104 .1019 .9988 .0019 .9948 .1115
LANL USDHDs .9196 .0017 .9141 .0705 .9994 .0019 .9990 .0772
UGR’16 Neris 3&2 Octet Src&Dest IP Mapping .3975 .2109 .8507 .3238 .9959 .6003 .9759 .3723
UGR’16 Neris 20-Bits IP Mapping .7404 .1312 .9575 .2363 .9978 .1771 .9875 .2437
UGR’16 Neris 24-Bits IP Mapping .2677 .0483 .8878 .1941 .9932 .2023 .9665 .2114
UGR’16 Neris 4 Character IP Hash Mapping .9981 .0998 .9907 .2085 .9981 .0999 .9907 .2085
UGR’16 Neris 5 Character IP Hash Mapping .2946 .0919 .9536 .4283 .9950 .3161 .9866 .4431
UGR’16 Neris 6 Character IP Hash Mapping .1060 .0033 .6502 .1465 .9458 .1405 .8611 .1955
UGR’16 Spam E-Mail .9661 .9152 .9640 .0275 .9661 .9152 .9678 .0276
PaySim Credit Card .8147 .6987 .9025 .9742 .8147 .6987 .9025 .9742

The Credit Card tensor achieves a PR-AUC score of 0.9742 with unsupervised learning, as shown in Table 7,
performing nearly as well as the supervised methods that see the labels [29]. We also compare the Credit Card
tensor-based statistical anomaly detection to prior work in Table 5. Du et al. use a variant of Support Vector
Machines with LogDet term (L-SVM) to perform supervised classification of the credit card fraud on the PaySim
dataset [24]. Similarly, Xenopoulos takes a supervised approach using an ensemble of Deep Belief Networks
(DBNs) [63]. For comparison, we use our score that accounts for events and skipped links with the ROC-AUC
score of 0.815. Both of the supervised methods introduced by Du et al. and Xenopoulos yield better performance
with ROC-AUC scores of 0.978 and 0.961 respectively. However, their scores are reported on manually balanced
datasets (i.e. the number of instances in each class during testing are made equivalent). This adjustment gives a clear
advantage to their results over our scoring with unbalanced data. In addition, tensor factorization extracts the latent
patterns representing the normal or expected behavior in an unsupervised manner. Unsupervised methods have the
advantage of yielding better results against novel attacks since the goal is to identify the abnormal phenomena.
Because the trained model represents normal activities, anything that deviates from the norm, including novel
attacks, can be detected. Another benefit of unsupervised methods is that they do not need labels during training. In
comparison, obtaining fully labeled datasets to train supervised models is often expensive, and supervised methods
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Fig. 9. ROC (a) and PR (b) curves for the Neris botnet detection tensors with different mapping schemes, and for the spam e-mail
detection tensor. ROC curves show the ability of different mapping schemes to assign lower probability to botnet and spam e-mail
links. PR curves show the false positive sensitivity of each tensor with different IP address mapping methods.

often do not perform well against unseen data, and struggle to perform on the highly unbalanced datasets common
in anomaly detection tasks.
Figure 9a shows that Neris 4 Character IP Hash Mapping performs the best when assigning botnet activities

lower p-values. Table 1 also shows that Neris 4 Character IP Hash Mapping has a lower standard deviation for the
anomalous p-values, which indicates that the predictions yield a more precise decision boundary. On the other hand,
Figure 9b shows Neris 5 Character IP Hash Mapping returns lower false-positive rates with a PR-AUC of 0.4431, if
we score it over the links without accounting for the skips. However, accounting for the skips and scoring each event
drops this score to .0919. Therefore, Neris 4 Character IP Hash Mapping is the most stable botnet detection tensor,
as all the IP addresses find mapping in the dimensions due to the reduced mapping space capturing all possible
outcomes during the training time. As the mapping space grows, the chance of collisions decreases; therefore, the
number of skipped instances and events increases. This results in reduced performance when scoring the events and
accounting for the skipped instances as shown in Table 7. Neris 6 Character IP Hash Mapping yields the worst
performance when scoring the events since this tensor contains the highest number of skips.
Also from the UGR’16 dataset, the Spam E-Mail tensor has a balanced number of malicious and benign events,

as shown in Table 3. Therefore, event scoring with the skips yields PR-AUC of 0.9152. The high PR-AUC score for
this tensor indicates that we are able to classify the events with a low number of false positives, and that our method
works on balanced data. We compare SPAM e-mail and botnet detection performance to prior work in Table 5.
Camacho et al. used a semi-supervised variant of PCA to detect both botnet and SPAM e-mail activities [15].

They form a derived dataset using the Feature as a Counter (FaaC) method [9]. FaaC forms a features vector of
counts by aggregating the flows in 1-minute intervals. Each 1-minute interval produces a vector-sized 138 from 11
network related features. They train on half of the 12,000 observations extracted from the TEST portion of the
UGR 16’ dataset (the 5 weeks used in testing in our paper). The other half was used in parameter optimization.
Magán-Carrión et al. also use FaaC with a 1-minute window to form their features vectors [42]. Magán-Carrión et
al. use various supervised learning methods on this dataset, here we report their best performing model (Random
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Fig. 10. USDs: ROC curves for p-value fusion methods on
ensemble of tensors until rank R.

Fig. 11. USDs: PR curves for p-value fusion methods on
ensemble of tensors until rank R.

Fig. 12. USDHs: ROC curves for p-value fusion methods on
ensemble of tensors until rank R.

Fig. 13. USDHs: PR curves for p-value fusion methods on
ensemble of tensors until rank R.

Fig. 14. USDHDs: ROC curves for p-value fusion methods
on ensemble of tensors until rank R.

Fig. 15. USDHDs: PR curves for p-value fusion methods on
ensemble of tensors until rank R.

Forest). Since Magán-Carrión et al. analyzes the UGR’16 using supervised methods, they also limit their analysis to
the TEST portion of the dataset which includes the majority of the target malicious activities. In addition, they
utilize Least Absolute Shrinkage and Selection Operator in feature selection and apply Bayesian optimization to
identify the optimal hyperparameters. FaaC that is used in both of these prior works generates a number of data
instances that are lower than the original number of flows in the dataset, with the greater number of features [42].
Magán-Carrión et al. state that when a time interval, or the new data instance, contains flows from multiple classes,
the instance is labeled the class with the majority flow count within the time interval. Finally, Nguyen et al. apply an
unsupervised technique, Variational Autoencoder, to detect botnet and SPAM emails [44]. Nguyen et al. also report
results on Gaussian Based Thresholding, which performs better than their method when detecting SPAM e-mails;
therefore, we also include it in our comparison.
They use a total of 5 days from the dataset with a 3-minute sliding window in their analysis. It is not clear if

all prior research that we compare our results against considered the scoring of skipped instances during the test
period. Therefore, we identify that tensors with event scoring including the skipped instances are the best choice for
impartial comparison to each prior research introduced above. We also note that, in addition to ROC-AUC scores,
Magán-Carrión et al. report their performance using the F1 metric, showing good performance [42]; however, they
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Table 8. P-value fusion scores for botnet and spam e-mail detection tensors on ensemble of R tensors

Arithmetic Mean Harmonic Mean Fisher
Dataset & Tensor Rank R ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC

UGR’16 Neris 3&2 Octet Src&Dest IP Mapping 8 .9780 .4064 .9780 .4728 .9778 .4563
UGR’16 Neris 20-Bits IP Mapping 10 .9661 .2397 .9671 .2459 .9885 .3003
UGR’16 Neris 24-Bits IP Mapping 7 .8675 .2139 .9961 .2247 .9244 .2283
UGR’16 Neris 4 Character IP Hash Mapping 10 .9914 .2290 .9914 .2248 .9894 .2482
UGR’16 Neris 5 Character IP Hash Mapping 7 .9868 .5087 .9874 .4751 .6316 .4952
UGR’16 Neris 6 Character IP Hash Mapping 6 .8601 .1649 .8624 .2070 .8644 .1997
UGR’16 Spam E-Mail 20 .9781 .0430 .9699 .0300 .8456 .0474

compare their results to Camacho et al. [15] using the ROC-AUC scores. Therefore, we perform the comparison
using ROC-AUC scores in this paper.
Our multi-dimensional analysis method yields better performance in most of the cases as shown in Table 5 where

the winning score is highlighted. Gaussian Based Thresholding performs slightly better than our tensor-based
method with a ROC-AUC score of 0.970 versus 0.966, respectively. With the caution in the false-positive realm,
we note that it is also interesting to see the latent patterns extracted with tensor factorization can yield better
results when assigning lower p-values to anomalies (high ROC-AUC score) compared to both supervised and
semi-supervised models. These results are accomplished using the same detection methodology across all datasets,
showing that our method is highly effective and general across applications in cyber security.

6.1.3 Ensemble of Tensors with Different Ranks: Anomalies are rare, but malicious events. Because they are rare,
datasets for anomaly detection suffer from high class imbalance problems. This can be seen in tables 2 and 3 with
event counts in the test set for each tensor, and in Table 1 when looking at the counts for anomaly and benign links
(with the exception of Credit Card tensor, where the number of benign links is less than the anomalous ones). Class
imbalance problems result in high sensitivity due to false positives. False positives are especially problematic for
the incident responders; therefore, one of the focuses of this expansion paper is to reduce the false-positive rate
of our multi-dimensional anomaly detection methods. To this extent, we show that the knowledge extracted from
tensor decomposition with different ranks can be combined to achieve a better prediction.
We unify the predictions made from ensemble of tensors using p-value fusion methods (Harmonic mean,

Fisher, and Arithmetic mean). The improvement in anomaly detection, especially a drop in false positive rate, is
demonstrated with the increasing prediction scores as we add more tensors to the ensemble and comparing the
results to the predictions made from a single tensor. For instance, we get the ROC-AUC and PR-AUC scores from
fusing p-values for each link i extracted from tensors rank 2 through 100, and compare these scores to a tensor
decomposed with rank 100 alone. We first look at the LANL authentication tensors USDs, USDHs, and USDHDs.
Figures 10, 12, and 14 display the ROC-AUC scores, and figures 11, 13, and 15 provide the PR-AUC values.
As we add more tensors to the group, Harmonic Mean continues to closely follow the score from the tensor rank

𝑅 alone, staying slightly above or below the AUC value of a single tensor for both ROC and PR curves. Therefore,
Harmonic Mean can be used as a fusion method to smooth out the final results. We observe this for each of the
authentication tensors. We also see that Fisher fusion results in a lower ROC-AUC score; however, it significantly
reduces the false-positive rates. With an ensemble of 200 tensors, the PR-AUC score for USDs increases above .41,
from around .25 obtained when scoring a single rank 200 tensor. Similarly, an ensemble of USDHDs tensors ranks
2 through 20 returns a PR-AUC score of around .45, which is a significant increase from around .10 of a single
tensor with rank 20.
Another observation to be made from these plots is how many ensembles are needed to reach a better performance

for different fusion techniques. For instance, Arithmetic mean fusion needs a multitude of tensors to yield improved
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performances. In comparison to the other fusion methods, Fisher requires fewer tensors in the ensemble to perform
better than a single tensor decomposition. We see a similar improvement in performance when ensemble learning is
applied to the UGR’16 dataset.
Table 8 shows the ROC-AUC and PR-AUC scores obtained with fusing the p-values using the ensemble of

tensors rank 2 through R, where R was again chosen based on the GPU memory space. We again see the increase
in PR-AUC scores for each tensor. For instance, Neris 5 Character IP Hash Mapping increases the score up to
PR-AUC of .5087. Similarly, Neris 20-Bits IP Mapping yield .3003 PR-AUC. In addition to applying p-value fusion
techniques on tensors with different ranks, we also perform p-value fusion over the tensor dimensions for entity
detection.

6.2 Anomalous Entity Detection

Table 9. LANL authentication tensor entity counts for fusion dimension(s)

Target Dimensions Total Entities Red Team Entities
User 10,129 76
Source 12,519 1
Destination 4,167 93
User-Source 31,287 76
User-Destination 69,045 117
Source-Destination 70,533 93

Table 10. Neris botnet and spam e-mail detection tensors entity counts for fusion dimension(s)

Source Destination Source-Destination
Dataset & Tensor Total Entities Anomalous Entities Total Entities Anomalous Entities Total Entities Anomalous Entities

UGR’16 Neris 3&2 Octet Src&Dest IP Mapping 1,913,701 40 65,532 61 5,556,593 393
UGR’16 Neris 20-Bits IP Mapping 652,285 70 374,830 51 7,347,752 776
UGR’16 Neris 24-Bits IP Mapping 1,693,756 64 410,362 31 7,050,719 364
UGR’16 Neris 4 Character IP Hash Mapping 65,536 70 65,530 61 4,854,559 976
UGR’16 Neris 5 Character IP Hash Mapping 1,010,027 70 408,404 48 7,583,050 716
UGR’16 Neris 6 Character IP Hash Mapping 1,922,410 53 399,520 23 5,791,258 173
UGR’16 Spam E-Mail 33,453 441 65,536 15 1,876,160 1,140

We detect anomalous entities by fusing p-values over tensor dimensions to assign anomaly scores to one or more
target dimension(s). In our results, an entity can be a single physical object in the network, such as a User, or a
combination of physical objects, such as a User-Source. Table 9 shows the total number of entities for the LANL
authentication dataset, and Table 10 has the entity counts for the tensors created from the UGR’16 dataset. Fusing
down to more than one dimension allows us to compare our results directly to previous performance benchmarks
with matrix factorization.
Figure 16 shows ROC-AUC and PR-AUC scores for each tensor when detecting anomalous entities from the

authentication events via score fusion. ROC-AUC scores indicate an improved ability to capture anomalous entities
with the introduction of time-based dimensions. PR-AUC scores reveal an increase in false positives with increasing
dimension; we suspect this increase is due to added sensitivity to temporal user characteristics. We obtain increased
ROC-AUC and PR-AUC scores by scoring ranked lists across all tensors via MRR, demonstrating that each tensor
captures complementary anomalies.
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Fig. 16. ROC-AUC and AP scores for anomalous entity detection using tensors with varying dimension. "MRR" shows fusion
ranked lists produced by all other tensors.

The previous benchmark for red team detection on the LANL Unified Host and Network Dataset was established
by Sanna Passino et al. with AUC scores of 0.863 and 0.902 when detecting red team events9 over the matrix with
dimensions User - Source and User - Destination, respectively [46]. Our fusion AUC scores, at 0.952 for User -
Source and 0.954 for User - Destination, demonstrating that jointly learning user behavior patterns over multiple
dimensions significantly enhances anomaly detection performance. We also look at the anomalous entity detection
performance for botnet events and spam e-mails.
Figure 17 shows the fusion scores for Source, Destination, and Source-Destination dimensions for each of the

tensors. Here Source and Destination refers to the dimensions for the source and destination IP addresses. Neris 5
Character IP Hash Mapping performs the best when detecting anomalous entities in terms of lower false positives.
Additionally, using tensors, we can reach a ROC-AUC score of .946 when detecting anomalous spam e-mails
between the source and destination IP addresses. These results indicate that our methods can be used in various
types of applications, making it like a "swiss army knife" tool for anomaly detection.

7 PYTHON CP-APR
The CP-APR algorithm was originally written in MATLAB [27] and released in the Tensor Toolbox [8]. The
MATLAB Tensor Toolbox is a popular software for tensor factorization, but MATLAB runs slowly when analyzing
large datasets. To support reproducibility and provide an easy path to operationalization, we implemented a Python
version of the CP-APR algorithm, named pyCP_APR, and released the code on GitHub. The software package
supports three objectives: providing an easy to use API, reducing the training time by supporting GPU computation,
and introducing an interface that easily supports anomaly detection workflows. pyCP_APR comes with Numpy and
9We compare to the PMF model variant that does not have access to covariate information.
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Fig. 17. ROC-AUC and AP scores for anomalous entity detection using tensors with varying dimension.
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Fig. 18. Comparision of runtimes for USDs, USDHs, and USDHDs tensors on PyTorch, Numpy, and MATLAB CP-APR. Results
are presented for the average of 10 runs. Each run is for a maximum of 10 epochs with rank 10.

PyTorch back-end options, and provides a simple API, similar to Scikit-learn. It also includes an interface to predict
anomalies over the fitted tensor, using the new methods presented in this paper. The PyTorch back-end allows
utilization of a GPU to reduce the runtime when factorizing sparse tensors. Since the number of cyber event logs
regularly reaches into the millions or billions, the fast training and inference capabilities available in pyCP_APR are
critical.
In Figure 18, we compare the runtimes of pyCP_APR with the PyTorch backend on a TITAN RTX GPU, the

Numpy backend on an Intel Skylake CPU, and the CP-APR MATLAB implementation run on an Intel Skylake CPU.
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The average of 10 runs with 95% confidence interval (CI) is reported for factorizing the LANL authentication tensor,
using a rank 10 with a maximum of 10 iterations10. While MATLAB CP-APR performs better than Numpy, we can
see a significant improvement in runtime using a GPU. For instance, PyTorch back-end using GPU is approximately
15 times faster when taking the decomposition of the 6 dimensional tensor USDHDs.
pyCP_APR is available to download from our repository; https://github.com/lanl/pyCP_APR. The repository

includes example Jupyter Notebooks and the API documentation.

8 LESSONS LEARNED AND FUTURE WORK
We noticed that anomaly detection results vary slightly depending on the initialization of the tensor factorization
algorithm. Throughout this paper, we randomly initialize the latent factors with values between 0 and 1 drawn
from a uniform distribution. Future work can consider better initialization techniques such as using the latent
factors extracted from another CP tensor decomposition algorithm. In such a method, if the algorithm used is not
non-negative, the negative values in the latent factors could be replaced with an epsilon value.
We also note that the size of the tensor on the GPU increases as we increase the rank. The large tensors built

from cyber data push the limits on GPU memory space. To better handle the tensor size, and potentially to remove
noise from the data, future work will consider building the tensor by aggregating the events over a time interval,
similar to the pre-processing steps performed by the prior work [15, 42, 44], and by utilizing feature transformation
and discretization methods discussed by prior work [16].
Extensions to our model include augmenting it to handle “cold starts” by incorporating Sanna Passino’s covariate

regression model [46]. Also, it should be noted that our model is fully compatible with a Bayesian extension, which
would elegantly perform model averaging, similar to our smoothing and rank-fusion steps [53]. We leave both of
these extensions to future work.
Finally, to further mitigate the possible false positives from our method, in production environments our framework

can be integrated with existing rule-based and statistical intrusion detection systems where post-processing can ease
the workload on analysts. For instance, the devices from an anomalous authentication alert can be correlated with
other weak indicators, such as anomalous process start events [57], and netflow traffic logs such as website visits.

9 CONCLUSION
In this paper, we introduced a generalized version of our tensor decomposition method for unsupervised anomaly
detection. With an unsupervised approach, our solution matches or surpasses state-of-the-art supervised and
semi-supervised learning baselines across several challenging and diverse cyber application areas with the added
potential benefit of better generalizability to unseen types of attacks by detecting deviations from normal or expected
behavior. Our tensor analysis based method is sensitive to anomalous activity over a diverse set of attributes. We
show that higher-order representations enhance the detection of anomalies due to the ability of tensor factorization
techniques to extract more predictive activity profiles that describe events simultaneously over multiple dimensions.
We also showed that the Python library that we have developed, named pyCP_APR, can significantly reduce
the tensor factorization time using a GPU. pyCP_APR also adds operational value to the CP-APR algorithm by
combining the factorization with an anomaly scoring and prediction interface.
Combining information across multiple tensor dimensions demonstrates state-of-the-art results for red team

detection on the LANL authentication dataset. Our methods generalize to the botnet, spam e-mail, and credit card
fraud detection problems, showing the multipurpose application of the system. The datasets used in our analysis
include both synthetic and real activities, balanced and unbalanced classes, and data collected on different resources
(host activity and netflow events). The diverse set of data used in this paper further supports the generalizability of
our methodology. The performance is reported accounting for both the events and links in the dataset to give a

10The variance across runs is practically negligible, as shown by the small confidence intervals.
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comprehensive view of the results. We also show that p-value fusion methods using an ensemble of tensor ranks
yield lower false-positive rates that are essential for incident responders.
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