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Abstract—Much of human knowledge in cybersecurity is en-
capsulated within the ever-growing volume of scientific papers. As
this textual data continues to expand, the importance of document
organization methods becomes increasingly crucial for extracting
actionable insights hidden within large text datasets. Knowledge
Graphs (KGs) serve as a means to store factual information in
a structured manner, providing explicit, interpretable knowledge
that includes domain-specific information from the cybersecurity
scientific literature. One of the challenges in constructing a
KG from scientific literature is the extraction of ontology from
unstructured text. In this paper, we address this topic and
introduce a method for building a multi-modal KG by extracting
structured ontology from scientific papers. We demonstrate this
concept in the cybersecurity domain. One modality of the KG
represents observable information from the papers, such as
the categories in which they were published or the authors.
The second modality uncovers latent (hidden) patterns of text
extracted through hierarchical and semantic non-negative matrix
factorization (NMF), such as named entities, topics or clusters,
and keywords. We illustrate this concept by consolidating more
than two million scientific papers uploaded to arXiv into the
cyber-domain, using hierarchical and semantic NMF, and by
building a cyber-domain-specific KG.

Index Terms—non-negative matrix factorization, cyber-
security, knowledge graph, topic modeling

I. INTRODUCTION

With the ever-growing volumes of text data, organizing large
quantities of scientific papers and identifying patterns within
the scientific community continues to be a challenging prob-
lem. Knowledge Graphs (KGs) are one of the key techniques
for storing factual knowledge in a structured manner. However,
building KGs from scientific literature remains a challenge
since much of the useful context in data, such as entities,
relationships between entities, and properties of entities, is
hidden in an unstructured manner. At the same time, domains
such as cybersecurity are highly diverse, containing knowledge
from a multidisciplinary set of fields. This necessitates a more
granular or highly domain-specific organization to discover
sub-topic areas. In this paper, we introduce a concept for
building domain-specific, multi-modal KGs using hierarchical
and semantic Non-negative Matrix Factorization (NMF) for
topic modeling. In our concept framework, we consolidate
generic scientific corpora into a highly-specific domain and
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use the extracted latent (hidden) patterns as an ontology in
the KG.

Here, for extracting highly-domain-specific clusters, we
introduce a hierarchical approach named HSNMFk-SPLIT that
can extract fine-grained sub-topics and their semantic sub-
structures from large text corpora, using NMF with automatic
model determination (NMFk [1]). For semantic NMFk, given
a text-document matrix X ∈ IRF×N

+ where F is the number of
tokens in the vocabulary and N is the number of documents
and a word-context (co-occurrence) matrix S ∈ IRF×F

+ , the
number of hidden topics, k, can be automatically estimated
through joint factorization. Here we enact joint factorization
with the SPLIT method, which allows combination of pat-
terns from separate factorizations. Incorporating the semantic
structure of the text with the ability to estimate the number of
topics enables a coherent separation of the latent topics and
accurate document clustering [2], [3]. We apply the SPLIT
method in a hierarchical manner to expand and separate the
main topics into sub-topics for a chosen domain, where the ex-
tracted sub-semantic structures serve as narrow vocabularies or
scientific-jargon seeds for Name Entities Recognition (NER).
Furthermore, to enhance the semantic clustering in each topic,
we also jointly factorize, using SPLIT, the category-text matrix
C ∈ IRF×L

+ (L is the number of distinct categories), values of
which represent the TF-IDF of tokens per document category.
Finally, HSNMFk-SPLIT addresses the computation overhead
that arises from factorizing a large TF-IDF matrix X by
separating N documents into an arbitrary number of distinct
matrices, factorizing each smaller TF-IDF matrix separately
in a distributed manner [1], and finally combining the patterns
from each matrix with the SPLIT method.

We demonstrate our hierarchical method by performing
topic modeling of titles and abstracts from papers posted
on arXiv (https://arxiv.org/), which number more than two
million. We then select a main topic of Deep Learning,
followed by a sub-topic of Security, and then a sub-sub topic of
Cybersecurity and Adversarial ML to build a domain specific
KG of observable data (titles, authors, etc.) and the latent
patterns (NER, keywords, and clusters/topics). This KG can
be used to identify emerging trends and facilitate the discovery
of relevant research papers for cybersecurity professionals in
highly specific domains such as Adversarial ML. Our initial
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results when demonstrating this concept show the ability and
practicality of our HSNMFk-SPLIT to extract meaningful
information from topics and their semantic sub-structures from
large datasets.

II. RELEVANT WORK

A. Knowledge Graphs

Recent studies have demonstrated the application of knowl-
edge graphs in identifying emerging trends, uncovering hidden
connections, and predicting future research directions within
scientific domains [4]–[11]. The integration of semantic anal-
ysis with graph-based structures allows for a more nuanced
understanding of the thematic evolution in fields such as deep
learning and cybersecurity [12], [13]. These advances highlight
the potential of knowledge graphs to transform the exploration
and exploitation of scientific literature, moving beyond tradi-
tional search mechanisms to enable a deeper, contextually rich
engagement with content [14], [15]. To achieve these results,
care must be given to the specific process for constructing
and analyzing knowledge graphs, as studied and explained in
[16]–[20].

Similar to our work, [21], scrapes the web for information
relevant to the domain specific knowledge. However their
domain is in medicine, and ours is in cyber security. Further,
they do not use decompositions to construct the graph, but
rather vocabularies. Similarly, [22], uses dates, topics, and
events as entities to make the knowledge graph but omits the
use of decomposition to organize large data. Our decompo-
sitions are enhanced by incorporating the semantic structure
of the text with the ability to estimate the number of topics,
which enables a coherent separation of the latent topics and
accurate document clustering. This method is supported by
the findings in [2], [3]. Building on [2], [3], we expand
our approach through hierarchical decomposition, as well as
incorporating semi-supervised labels of arXiv categories in
joint factorization to refine our capabilities.

B. Hierarchical Topic Modeling

A common method to hierarchical topic modeling is through
a probabilistic approach, in which the corpus is treated as
a mixture of topics that can be modeled with a probability
distribution. One such method is hierarchical Latent Dirichlet
Allocation (hLDA) using the nested Chinese Restaurant Pro-
cess (nCRP) beforehand [23]. This model allows for arbitrarily
large branching factors in topic hierarchies with the nCRP
aiding in inferring the appropriate depth of the topic tree. An-
other LDA-based approach is Hierarchical Dirichlet Processes
(HDP). In this method, a set of Dirichlet processes are coupled
via their base measure, which is itself distributed according to
a Dirichlet process [24]. The authors introduce two Markov
Chain Monte Carlo (MCMC) sampling schemes for posterior
inference under hierarchical Dirichlet process mixtures and
test the approaches on multiple datasets.

More recent approaches to hierarchical topic modeling make
use of variational auto-encoders, recurrent neural networks,
and transformers [25]–[29]. While successful, these methods

face a problem common to deep learning: successful models
depend heavily on the quantity and quality of the training data.
HSNMFk-SPLIT is a favorable approach to hierarchical topic
modeling since it is instance-based. Only the data that is being
modeled is required for computation.

III. DATASET AND PRE-PROCESSING

Using HSNMFk-SPLIT, we perform topic modeling on the
titles and abstracts of literature uploaded to arXiv1 [30]. Our
pre-processing pipeline includes removal of common English
stop-words, stop-words that are often present in scientific
literature (such as ‘doi’, ‘preprint’, ‘copyright’, ‘figure’, and
‘demonstrate’), stop-phrases (such as ‘All rights reserved.’),
non-ASCII characters, symbols, next-line characters, tags
(such as HTML and LaTeX), and e-mail addresses. We also
join hyphenated words into single tokens, make the tokens
lower-case, and lemmatize the tokens using the Python pack-
age NLTK [31] (NLTK is used with the allowed postags
‘NOUN’, ‘ADJ’, ‘VERB’, ‘ADV’, and ‘PROPN’). The non-
English abstracts are excluded from analysis using the Python
implementation of language-detection software [32]. Finally,
after removing those abstracts with less than 10 tokens, we are
left with 2,178,187 documents in our corpus represented with
a TF-IDF matrix X ∈ IR10,280×2,178,187

+ . To reduce noise, we
remove the tokens present in more than 80% and less than
500 documents when building X.

The semantic structure of the documents is represented
with matrix S ∈ IR10,280×10,280

+ where the values represent
the number of times two words co-occur in a predetermined
window length of w = 100 tokens. We normalize S with
Shifted Positive Point-wise Mutual Information (SPPMI) [33],
with shift s = 4. The categorical semantic structure is
represented with the matrix C ∈ IR10,280×172

+ values of which
represents the TF-IDF of tokens per document category. Here
the category of the document is assigned by the author in
arXiv2. While a given document can be assigned to more than
one category, we use the primary category assignment.

IV. METHODS

In this section, we first describe the HSNMFk-SPLIT
method, then explain how we use the clusters found by
HSNMFk-SPLIT to build our KG.

A. HSNMFk-SPLIT

We use a publicly available implementation of NMFk for
its automatic model determination capability, which avoids
over/under-fitting to topics, and apply it in a hierarchical
manner [1]3. HSNMFk-SPLIT is a method that automatically
estimates the number of latent topics and extracts coherent
topics by exploiting the semantic representation encoded in the
word-context matrix, categorical information encoded in the
word-category matrix, together with the text-document matrix.
Given a TF-IDF text-document matrix X ∈ RF×N

+ , SPPMI

1arXiv Dataset: https://www.kaggle.com/datasets/Cornell-University/arxiv
2arXiv Category Taxonomy: https://arxiv.org/category taxonomy
3NMFk is available in https://github.com/lanl/T-ELF.

https://www.kaggle.com/datasets/Cornell-University/arxiv
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Fig. 1: Word cloud of selected topics and their interpreted labels. Method is hierarchically applied three times, selecting a
topic to extract its sub-topics at each level. Selected topics from each level are shown in each row of the figure.

normalized word-context matrix S ∈ RF×F
+ , and word-

category matrix C ∈ RF×L
+ at each node of the hierarchical

tree, HSNMFk extracts the topics - the columns of matrix W
and coordinates of the documents, i.e., columns of matrix H
corresponding to the X for that node in the tree. HSNMFk
is performed by solving a joint optimization problem at each
node in the tree:

minimize
W∈RF×k

+ ,H∈Rk×N
+ ,G∈Rk×F

+ ,J∈Rk×L
+

1

2
||X−WH||2F + α||S−WG||2F+

β||C−WJ||2F

(1)

where ||.||2F is the Frobenius norm, and α and β are
regularization parameters controlling the weight of S and
C in the decomposition. F is the number of words in the
vocabulary, N is the number of documents, and L is the
number of categories. One way of evaluating the above
expression is by concatenating the TF-IDF matrix X with S,
and C, and finally applying NMFk [1] on the concatenation
[34]. However, this is computationally challenging as the
matrices are significantly larger after concatenation. Hence,
we incorporate the SPLIT technique to minimize the
computation and be able to perform the decomposition of
each matrix in parallel (HSNMFk-SPLIT):

• Factorizing large matrices via SPLIT: First, split X ∈
RF×N

+ into m chunks so that the ith chunk given by

Xi ∈ RF×N
m

+ can be factorized with NMFk as Xi ≈
WiHi where Wi ∈ RF×ki

+ and Hi ∈ Rki×N
m

+ . Here m
chunks can be factorized in parallel. Next, concatenate
m Wi matrices obtained from previous step to construct
W̃ ∈ RF×K

+ where W̃=[W1|W2|...|Wm] and K = k1+

k2 + .....+ km. Now factorize W̃ with NMFk such that

W̃ ≈ WxMx where Wx ∈ RF×p
+ ,Mx ∈ Rp×K

+ and
Mx = [M1|M2|...|Mm] where Mj ∈ Rp×ki

+ . Finally,
from previous steps, multiply Mi and Hi to obtain H

(∗)
i

where H
(∗)
i =Mi ×Hi and H

(∗)
i ∈ Rp×M

m
+

• Incorporate semantic and category structure: Given
word SPPMI matrix S and category matrix C, utilize
NMFk to decompose S ≈ WsHs and C ≈ WcHc

where Ws ∈ RF×s
+ ,Hs ∈ Rs×F

+ ,Wc ∈ RF×c
+ and

Hc ∈ Rc×L
+ . Now concatenate Wx with Ws and Wc

to obtain W+ where W+ = [Wx|Ws|Wc] and W+ ∈
RF×Z

+ where Z = p + s + c. Then factorize W+ with
NMFK as W+ = WY where W ∈ RF×t

+ , Y ∈ Rt×Z
+ ,

Y = [Yx|Ys|Yc] and Yx ∈ Rt×p
+ ,Ys ∈ Rt×s

+ and
Yc ∈ Rt×c

+ . Finally, multiply Yx with H(∗) to obtain
H such that H = YxH

(∗) where H ∈ Rt×N
+ and

W ∈ RF×t
+

• Hierarchical topic modeling: For each node in the tree,
once W and H are obtained, W models the topics, and
H models the document’s topic assignment. Here we
compute the maximum indices for each column of H
(also known as H-clustering) [35] to estimate the best
topic representation of each document given as topic(Xj)
= argmaxHj . The documents in each topic (super-topic)
can then be factorized again following the above steps to
estimate the underlying sub-topics along the tree depth.

B. Building the Knowledge Graph
The knowledge graph, a Neo4j graph [37], is composed

of nodes and relations from several forms of data . First
and foremost, the documents are inserted into the graph,
where they are assigned observable attributes in the original
data. These observable data include titles, authors, DOI, year,
publication information, citations, references, affiliations, etc.
Next, the cleaned text decompositions are used to extract
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Fig. 2: Data pipeline from starting from arXiv data (1), text cleaning (2), running HSNMFk-SPLIT for topics (3), extracting
the keywords for the decomposition (4), extracting the Named Entities per document (5), and then structurally aggregating the
data into the knowledge graph (6). Images generated with DALL·E [36].

HSNMFk-SPLIT topics and keywords from a highly domain-
specific leaf decomposition about security. The words and
topics are injected into the graph, connected to their documents
from the argmax of the topic probability for each document.
The keywords are connected to the topics where the edges
contain the probabilities as weights. Next, the text of each
document is examined with spaCy’s NER pipeline [38], which
produces 18 labels. We insert the 6 most useful labels of
the 18 total for the purpose of cyber-security ontological
exploration:Organization, Event, Person, Location, Product,
and Geopolitical Entity. Each of the NERs is connected to
each source document that produces it; some of documents
may produce the same NER entities. Documents are further
connected into communities where NERs are shared.

V. RESULTS

Our results are shown in Figure 1 with the word clouds
(most prominent words corresponding to each column of W),
and with the distribution of categories in each topic and sub-

topic in Figure 3 (the top ten categories are shown for the
given topic). While word clouds highlight the interpretability
and quality of the extracted topics, the distribution of the
categories shows the specificity of the documents as we look at
the sub-categories. We apply our method hierarchically three
times, at each level selecting one topic to expand further to
identify its sub-topics. Since the initial X is large, we chunk
the documents into 20 separate matrices and apply semantic
joint factorization with automatic determination of the number
of latent topics. Individually, the 20 matrices revealed between
30 and 80 latent topics. After joint factorization, we have
identified 24 total super-topics in 2 million+ documents.

We selected the topic related to Deep Learning. The first row
of Figure 1 shows the word cloud for this topic, and the first
row of Figure 3 displays the distribution of categories that are
in this topic. The categories are mainly represented in diverse
sub-fields of Computer Science, ranging from Cyber (cs.CR)
to Computer Vision (cs.CV). At the second level, the sub-
topic of Deep Learning produced 29 total sub-topics, which
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Fig. 3: Distribution of the top ten document categories, based
on the arXiv author assignments. Each topic corresponds to the
word clouds from Figure 1. Selected topics from each level
are shown in each row of the figure.

include Computer Vision and Security. The sub-topic that can
be interpreted as Computer Vision based on the tokens in the
word cloud is now narrowed down to the cs.CV. On the other
hand, the Security sub-topic is mainly distributed between the
categories cs.CR (Cyber), cs.CV (Computer Vision), and cs.LG
(Language); therefore, we expand the Security sub-topic to the
third level, further separating it into three sub-sub-topics, two
of which can be interpreted as Cyber-security and Adversarial
ML based on the word clouds. Similarly at the third level, the
Cyber-security topic category distribution is narrowed down
to cs.CR. The Adversarial ML topic contains documents from
three main categories of cs.CR, cs.CV, and cs.LG, which is
reasonable based on this field and how research focuses on
adversarial computer vision and language models.

In the domain specific leaf decomposition, 1383 vocabulary
words were used to discover three latent topics, which are
the counts of the entities in the graph. These three topics

contain their own unique, non-overlapping set of documents.
Specifically, topic 0 had 597 documents, topic 1 had 114
documents, and topic 2 had 565 documents. These topics
were composed from the 1383 vocabulary words, but the
probability of the words occurring in each topic changes
according to the documents contained. The knowledge graph
contained NER entities such as 245 organizations, 7 events, 64
persons, 3 locations, 679 products, and 22 geopolitical entities.
Overall the graph produced 3758 node entities and 9428
edge relationships. Queries could be asked of the knowledge
graph, which have to first be translated from natural language
into Cypher language. For example, ’Which papers mention
MNIST?’ returns all of documents that have mnist as a
NER, a count of 50 documents. Similarly, ’Which documents
in the security decomposition are in the ’cs.SE’ (software
engineering) arXiv category’ finds 7 documents, which are
further linked to 2 organizations, an event, topics 0 and 2, a
product, and 7 additional categories.

VI. CONCLUSION

In this paper, we have presented a concept for building
a domain specific multi-model knowledge graph (KG) from
unstructured scientific text data. Our KG includes observable
entities from data such as paper titles, authors, publication
year, as well as latent (hidden) patterns such as named entities,
keywords, and topics/clusters that are extracted with a new
semantic hierarchical NMF method, named HSNMFk-SPLIT,
for document organization. HSNMFk-SPLIT is designed for
large corpora using distributed joint factorization, and has the
capability to perform automatic selection of the number of
latent topics. The semantic structure and automatic model
selection allows extraction of the coherent topics. We have
demonstrated the feasibility of HSNMFk-SPLIT in performing
topic and sub-topic extraction on the abstracts of more than
two million papers posted on arXiv, and consolidating these
generic scientific papers to cyber-specific data to build a
highly-domain-specific KG.
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