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ABSTRACT
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Dissertation directed by: Professor Charles Nicholas
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Electrical Engineering

Malware continues to be one of the most dangerous and costly cyber

threats to national security. As of last year, over 1.3 billion malware spec-

imens have been documented, prompting the use of data-driven machine

learning (ML) techniques for their analysis. However, existing ML approaches

face significant barriers that limit their widespread implementation. These

challenges include the detection of novel malware, maintaining performance

with low quantities of labeled data during training, and classifying malware

under class imbalance: a scenario where malware families are unevenly rep-

resented in the dataset. This dissertation addresses these shortcomings by

introducing three novel semi-supervised ML methods based on tensor decom-

position. Our methods are based on dimensionality reduction, hierarchical



tensor decomposition, automatic model determination, and feature extrac-

tion methods with selective classification or reject-option capability. This

“reject-option” capability is a form of self-awareness that allows our mod-

els to abstain from making a decision under uncertainty, which in return

allows for detection of novel threats. In this dissertation, we describe the

foundational concepts underlying our methods and describe the approaches

we developed: the Random Forest of Tensors (RFoT), HNMFk Classifier,

and MalwareDNA. Additionally, we detail the capabilities of our methods to

utilize High Performance Computing (HPC), multi-processing, and Graphi-

cal Processing Units (GPUs) for accelerated computation. We showcase our

experiments with all three methods where we demonstrate stable task per-

formance under extreme class imbalance, low-quantity of labeled data, and

extreme quantities of malware families. We also showcase results when simul-

taneously classifying benign-ware and malware, classifying malware families,

and detecting novel malware families. Our results are compared against state-

of-the-art semi-supervised and supervised ML baselines on two datasets. We

showcase how our method surpasses the performance of our baselines with a

trade-o↵ in increased abstention or reject-option rate.
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Executive Summary

Malware is one of the most dangerous and costly cyber threats to national

security and a crucial factor in modern cyber-space. The majority of prior

research for malware family classification, over the past two decades, has

not su�ciently accounted for core evaluation criteria in their work including

learning under class imbalance, ability to identify new malware, and the cost

of production-quality labeled data [133, 148]. For example, the majority of

ML solutions for malware family classification are unrealistically limited to

identifying the top most populous families. This results in reports of excellent

performance on evaluation metrics that do not generalize to the real world,

limited as they have been to the analysis of “easy” malware. At the same

time, semi-supervised learning in the malware classification field has not

been widely explored despite its potential benefits [148]. Finally, proposed

ML models are often designed either for malware/benign-ware classification

or malware family classification as separate tasks. With the ever-growing

quantity of malware, attacks, and their complexities there is an urgent need

to improve existing solutions and their operational architectures to drive the

increased adaption of ML-based solutions.

In this dissertation we describe three frameworks that addresses the short-
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comings of large-scale malware analysis using advanced tensor decomposition

methods. While the first two frameworks described in the dissertation, Ran-

dom Forest of Tensors (RFoT) and HNMFk Classifier, lay the groundwork for

addressing the shortcomings, the third framework, MalwareDNA, enhances

their ideas and tackles their limitations. MalwareDNA unifies the capability

of malware detection and malware family classification into a single frame-

work, while also addressing the shortcomings of novel malware family identi-

fication. In this way, MalwareDNA can classify known malware families and

separate them from benign-ware, as well as identify new types of families, all

at the same time. MalwareDNA, in addition, addresses the other aforemen-

tioned major shortcomings in the field of malware analysis with ML. Our

method operates well under class-imbalance where it can detect both promi-

nent and rare malware. MalwareDNA is based on hierarchical non-negative

matrix factorization (NMF) with automatic model determination (NMFk)

[10], with the implementation of selective classification (or the reject-option,

abstaining classification) [44, 53, 184].

We have thus far reported state-of-the art results in use of tensor de-

composition in the field of cyber and data privacy. Our anomaly detec-

tion method based on unsupervised tensor decomposition out-performed sev-
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Method Venue Type Year Citation
Cyber Anomaly Detection IEEE International Conference on Intelligence and Security Informatics Conference Paper 2020 [57]
Cyber Anomaly Detection ACM Digital Threats: Research and Practice Journal Paper 2022 [72]
Tensors for Malware AV Scan Malware Technical Exchange Meeting Poster 2022 [29]
SCADA Anomaly Detection IEEE Military Communications Conference Conference Paper 2023 [129]
Tensors for Cybersecurity Malware Technical Exchange Meeting Poster 2024 [68]
Text Mining ACM Symposium on Document Engineering Conference Paper 2021 [77]
Text Mining ACM Symposium on Document Engineering Conference Paper 2022 [73]
Text Mining International Conference on Machine Learning and Applications Conference Paper 2023 [158]
Text Mining Conference on Data Analysis Poster 2023 [67]
Knowladge Graphs & Text Mining IEEE International Symposium on Digital Forensics and Security Conference Paper 2024 [27]
HPC IEEE High Performance Extreme Computing Conference Conference Paper 2022 [32]
HPC The Journal of Supercomputing Journal Paper 2023 [33]
Data Privacy International Conference on Machine Learning and Applications Conference Paper 2022 [71]
Tensor Decomposition: CP-APR GitHub Software 2021 [61]
RFoT GitHub Software 2022 [63]
Tensor Decomposition: CP-ALS GitHub Software 2022 [55]
Tensor Decomposition Toolbox GitHub Software 2023 [69]
RFoT Malware Technical Exchange Meeting Poster 2021 [62]
RFoT University of Maryland, Baltimore County M.S. Thesis 2022 [56]
RFoT Springer Nature Book Chapter 2024 [70]
HNMFk Classifier ACM Transactions on Privacy and Security Journal Paper 2023 [74]
HNMFk Classifier Los Alamos National Laboratory News Article 2024 [134]
MalwareDNA IEEE International conference on Intelligence and Security Informatics Conference Paper 2023 [65]
MalwareDNA Los Alamos National Laboratory Patent 2023 [64]
MalwareDNA Malware Technical Exchange Meeting Poster 2023 [66]
MalwareDNA IEEE International Symposium on Digital Forensics and Security Conference Paper 2024 [76]

Table 1: This table outlines the various outcomes associated with this dis-
sertation, including conference and journal papers, posters, theses, news ar-
ticles, and patents for each method. Outcomes directly resulting from this
dissertation are highlighted in bold text. Additionally, the table includes
outcomes from other tensor decomposition-based research e↵orts led by and
contributed to by the author of this dissertation.

eral other available state-of-the-art models (including supervised and semi-

supervised) in a diverse set of complex anomaly detection tasks includ-

ing detection of botnet and spam emails, identifying compromised credit

cards and users with stolen credentials, and detecting power-grid anomalies

[57, 61, 72, 129]. We have also, using tensor decomposition, introduced the

first implementation of a one-shot federated learning method for collaborative

filtering [71]. Our work thus far provides evidence for promising application

of tensors in the realm of cyber and data privacy space, and specifically mal-
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ware analysis. Earlier ideas behind MalwareDNA were used with another

method named RFoT, which we presented at the 2021 Malware Technical

Exchange Meeting (MTEM) [62]. RFoT later formed the basis for Eren’s

M.S. thesis [56], and then got accepted as a chapter in a Springer Nature

book [70]. Portions of the MalwareDNA work was published in the ACM

Transactions on Privacy and Security (TOPS), specifically the hierarchical

bulk classification part, which we named HNMFk Classifier. This was used

to classify the largest number of recorded malware families under realistic ex-

treme class imbalance, where our method outperformed the state-of-the-art

architectures [74]. In this work, we have also demonstrated how our solution

can work with a low quantity of labeled data (stable performance even as the

training-set size was dropped to 5%). This work later led to a news article

by Los Alamos National Laboratory (LANL) [134]. Since RFoT and HNMFk

Classifier lay the groundwork for developing the ideas of MalwareDNA, this

dissertation initially outlines these methods.

We have also presented a paper at the 2023 IEEE international conference

on Intelligence and Security Informatics (ISI), that showcased the preliminary

results from using MalwareDNA on a small quantity of malware data for

novel malware family detection [65], presented a poster on MalwareDNA
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being applied to a larger set of malware specimens at the 2023 MTEM [66],

and presented a paper at the 2024 IEEE International Symposium on Digital

Forensics and Security (ISDFS) that showcased MalwareDNA’s capability to

work under class imbalance [76]. Finally, the novelty of the method and

the prospect of its application on other U.S. mission-critical problems has

led to a 2023 provisional patent submission by LANL for MalwareDNA [64].

We summarize the direct and indirect outcomes of this PhD dissertation in

Table 1. This dissertation compiles all the ideas for our tensor decomposition-

based, semi-supervised scheme with reject-option, by integrating the concepts

of RFoT, HNMFk Classifier, and finally, MalwareDNA. Furthermore, this

dissertation provides a more detailed study of MalwareDNA, including new

experiments and novel confidence calculations that define the reject-option.
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Chapter 1

Introduction

Malware is a generic term for any unwanted software with a purpose of

stealing personal or confidential information, or causing harm to the system

when deployed. Recent cyber reports rank malware as one of the most costly

and frequent cyber threats [31]. In general, the yearly cost of malware to or-

ganizations is reported to be $2.5 million [31], while the total cost of a single

ransomware breach is nearly $4.62 million [2]. In addition, approximately

half a million new malware specimens are reported daily [164]. This rapid

increase in the quantity of malware is accompanied with the growing sophis-

tication and threat capabilities, making the problem of defending against

malware more challenging [3, 4]. The growing capabilities, sophistication,
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cost, and the quantity of malware combined with the lack of an experienced

malware analyst workforce to respond to the immense number of malware

attacks drives the need to utilize automated defense systems based on ma-

chine learning (ML) to combat malware [106, 126, 144, 145]. Use of ML for

automated malware analysis can enable early detection and reduce response

times allowing automation to reduce the cost of a security breach by 80% [2].

The goal of malware family classification is to assign malware family labels

to known-malware examples to better understand specimen behavior [148].

Malware authors actively generate new specimens to evade detection and to

introduce novel threats, resulting in variations within existing malware fami-

lies or evolution of new/novel families. One aspect that our work focuses on is

classifying existing and novel malware families in a multi-class classification

setting with uncertainty quantification, an important task for risk analysis

to assess threat severity and develop mitigation strategies for emerging or

new threats. Our work also demonstrate capabilities in separating malware

from benign-ware, a binary classification task. While ML-based solutions

may reduce time and costs for malware detection and recovery, the adoption

of such strategies has been slow [95]. We attribute this to real-world com-

plexities pertaining to malware analysis [95, 148], and seek to address these

7



shortcomings in this work.

Recent works often overlook relevant evaluation criteria for real-world

applications of malware family classification. These core criteria include as-

sessing the model’s ability to identify new or novel malware and to classify

malware families in the face of class imbalance [74, 75, 133, 148]. Deter-

mining that a given specimen is not a member of a known malware family

with certainty is an important malware analysis task. At the same time,

popular supervised models trained on known malware families may fail to

generalize to new data, resulting in false negatives on novel specimens which

may lead to security incidences or missed threats [74, 148]. Similarly, the

ML-based models should be able to operate under conditions of class imbal-

ance. In malware analysis, class imbalance refers to a large disparity in data

class counts– instances of specific malware families significantly outnumber

(prominent malware) instances of other low-count classes (rare malware) in

the dataset. The models trained with prominent malware families may fail

to generalize and detect rare specimens. However, it is still important to

detect the rare specimens as they can also cause security breaches. Finally,

while semi-supervised learning can help address these shortcomings, they

have not been widely studied for Windows malware [148]. With the growing

8



quantities of malware in the wild, there is an urgent need to develop meth-

ods that address these shortcomings, and motivate increased adaption of ML

solutions.

In this dissertation, we showcase three semi-supervised methods based

on tensor decomposition: Random Forest of Tensors (RFoT), HNMFk Clas-

sifier, and MalwareDNA. RFoT leverages ensemble learning, together with

tensor decomposition and clustering for classifying malware and benign-ware.

HNMFk Classifier leverages hierarchical non-negative matrix factorization

(NMF) with automatic model determination (NMFk) [10, 11, 12, 13, 132]

to perform bulk classification (i.e. no training and test time prediction pro-

cedure). While HNMFk Classifier is not a real-time solution, since it is a

bulk classifier, it maintains its performance under extreme class imbalance,

extreme number of malware families, and in the presence of novel malware

families. In contrast, we use MalwareDNA [75], which also uses hierarchical

NMFk, as a real-time solution for classification of both rare and prominent

malware families (class imbalance) as well as identification of novel malware

families.

Both for HNMFk Classifier and MalwareDNA, the automatic estima-

tion of the number of latent (hidden) signatures with NMFk helps avoid
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under/over-fitting, which enables data modeling with high specificity and

accuracy. Meanwhile, the hierarchical clustering approach, guided with a

semi-supervised scheme, in our methods helps us determine whatever hier-

archical structure exists among the malware specimens and extract accurate

patterns or signatures. We use the signatures and the hierarchical clusters for

bulk classification with HNMFk Classifier. Di↵erently, with MalwareDNA,

we build an archive of latent signatures (identifiers) of malware families.

These latent signatures are then used for precise real-time downstream

classification of malware families, and separating them from benign-ware.

MalwareDNA also includes a selective classification method to perform ab-

staining classification (reject-option) using distinct confidence metrics [53].

While MalwareDNA uses confidence metrics, HNMFk Classifier includes a

di↵erent type of reject-option that is based on a semi-supervised scheme,

where the labels in the extracted clusters are used as a reference for deter-

mining the abstention. The reject-option lets us calculate the confidence of

the model, and gives the model the ability to say “I do not know”, and gives

the user the ability to select between performance and coverage [184]. Here

coverage refers to the amount of non-abstaining classification, or the amount

of samples where the model did not say “I do not know” and made a decision
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instead.

The reject-option capability enables HNMFk Classifier and MalwareDNA

to identify novel malware families, and maintain its performance under class

imbalance by reducing its coverage rate. Abstaining classification with the

reject-option capability to withhold from uncertain predictions allow for es-

tablishing a framework ideal for “high-stake detection problems as it im-

proves the model reliability and safety” [44]. There are two types of malware

features that can be used in ML systems.

Dynamic malware analysis-based features are collected at run-time and

often include system calls, file system events, network, and process activ-

ity. In comparison, static-malware-analysis-based features directly come from

the contents of an executable binary such as the Portable Executable (PE)

header, strings, code, and raw bytes. The static malware features can be

collected from a specimen without a need to execute the binary. Dynamic

analysis-based features often provide a more detailed picture of the malware

behavior and are less prone to possible obfuscations and packing techniques

[157]. However, obtaining dynamic features has several challenges. Dynamic

features require executing the malware in a resource-expensive isolated sand-

box environment that often result in a slow feature collection process. In
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addition, some malware is capable of detecting the presence of a sandbox

and modifying its behavior [149]. Despite the potential shortcomings, static

malware features are still an e↵ective way to detect and characterize mal-

ware. We refer the reader to [157] for more details on classical malware

analysis. In this study, we focus on static-malware-analysis-based features.

Specifically, we showcase the capabilities of our methods when classifying

Windows Portable Executable (PE) format malware specimens into families

and benign-ware using static analysis-based features [16].

Our research has already made significant strides, evidenced by our method’s

publication in peer-reviewed journals, book chapters, news articles, confer-

ence proceedings, a master’s thesis, poster presentations, and a provisional

patent [56, 60, 62, 64, 65, 66, 70, 76, 134]. In this dissertation, we pro-

vide a comprehensive overview of MalwareDNA, including discussions on the

precursor methodologies, RFoT and HNMFk Classifier, that paved the way

for the development of MalwareDNA. Additionally, we delve deeper into the

operational mechanisms of MalwareDNA, presenting new experiments and

introducing new methods for estimating model confidence, which is crucial

for the reject-option mechanism. To the best of our knowledge, our work is

pioneering in integrating real-time malware detection, malware family classi-
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fication, and the identification of novel malware families into a unified system,

leveraging selective classification for enhanced security measures. Further, to

the best of our knowledge, our experiments with HNMFk Classifier holds the

record for the largest number of malware families used for classification all

at once (over 2,800).

1.0.1 Motivation and Problem

The rationale behind the shortcomings of the existing ML methods for

malware analysis, which are the motivation behind RFoT, HNMFk Classifier,

and MalwareDNA, are:

• ML systems used in malware classification often rely on data-hungry

methods requiring large quantities of pre-labeled data for training [7,

152], but obtaining large amounts of labeled data is often challenging.

For example, labeling malware requires expert knowledge, making the

dataset curation expensive and time-consuming [40, 148]. At the same

time, problems pertaining to large-scale malware analysis produce large

quantities of raw data. An example of this problem is the quantity

of malware found in the wild, where approximately 13.5 million new

malware specimens are reported every month [148, 165]. Therefore, in
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global security applications for malware analysis, ML systems need to

be able to work with both limited (intrinsic lack of labeled data) and

large datasets (large-scale malware analysis).

• Detection of unseen malware (e.g., novel malware family), is an impor-

tant capability for developing mitigation strategies for new threats and

curating new datasets. Current ML systems often do not possess this

ability and often do not generalize well to new data [72, 148]. Thus,

these ML systems are making increasingly inaccurate predictions with

new data-samples.

• Poor generalization to new data poses challenges for class-imbalance

problems where a model yields accurate predictions on the prominent

threats while failing to recognize the threats with rare data [40]. Here,

class-imbalance problem refers to the situation where certain malware

families are heavily represented in the dataset as compared to few other

families that have low quantities of data. For example, a malware

defense systems that is trained on common/prominent malware may fail

to detect rare malware [148]. To ensure better defense, ML systems still

need to be able to detect the rare families; however, many ML methods
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require large quantities of data to learn the patterns. Therefore, they

often generalize poorly to the families with low-quantities of data and

make mistakes.

• Finally, mission-critical objectives in malware analysis generate large

quantities of mixed individual signals that require unmixing and un-

derstanding of the origin of individual signals for decision making. An

illustrative example for mixed signals is the famous ballroom example,

where a source microphone may record sound present in the ballroom,

and the recorded sound would include mixed signals from everyone

present in the room. For accurate identification of individuals present

in the room, an ML model would need to separate the mixed signals,

which is also known as blind-source separation. The hypothesis here is

that malware consists of mixed signals from di↵erent sources because

malware families change over time, retaining patterns from their evolu-

tion. An analogy to malware evolution is a biological phylogenetic tree,

where a particular specimen (in our case, a malware family) may re-

tain characteristics or patterns from its ancestors in the tree. Therefore,

classifying malware families requires separating and extracting individ-

ual patterns, which can provide valuable insights into specific malware
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characteristics, such as the presence of an encryptor or a backdoor rou-

tine. The ability to estimate the number of individual hidden signals

is needed here, but to the best of our knowledge, is not yet present in

any malware family classification tool.

Here, as our ultimate model, we propose a novel semi-supervised AI

framework, named MalwareDNA, that addresses the above shortcomings,

and that can predict both “This is a known malware!”, and “I do not know

what this is!” [54, 184], using both limited or extra-large datasets. In this

way, MalwareDNA can classify known malware families and separate them

from benign software, as well as identify new types of malware families, all

at the same time.

1.0.2 Dissertation Statement and Solution

In this dissertation, we introduce three novel semi-supervised AI frame-

works designed for large-scale malware analysis, addressing the limitations of

current methods. These frameworks, named RFoT, HNMFk Classifier, and

MalwareDNA, progressively build upon each other’s capabilities. RFoT and

HNMFk Classifier lay the foundational groundwork that leads to the devel-

opment of MalwareDNA, which we consider as our ultimate model. This
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model not only addresses the limitations of its predecessors but also intro-

duces significant advancements.

MalwareDNA distinguishes itself by its ability to di↵erentiate malware

from benign software, classify known malware families, and detect previously

unseen types of malware or novel malware families. The innovative aspects

of MalwareDNA include several key components:

• An innovative semi-supervised hierarchical method to construct latent

signature archives, which includes the ability to work with limited data,

to unmix records and determine the number of original signals. This

method leverages the ability of tensor decomposition to extract complex

and multi-faceted activity details combined with LANL-patented tech-

nique for automatic model determination that enables accurate data

modeling [10], which has already allowed us to report state-of-the-art

unsupervised cyber anomaly detection results in diverse set of di�cult

problems [57, 61, 72]. The new semi-supervised hierarchical method

here further advances the modeling of data for improved specificity

and accuracy of latent signature extraction. These signatures are then

used for precise real-time downstream classification and identification

of malware families, and benign software.
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• An innovative optimization method to perform real-time detection of

unseen signatures (or novel malware) by implementation of the reject-

option method [184]. Reject-option introduces the self-awareness ca-

pability to our model, or an ability to know when it does not know

[184]. This way, MalwareDNA can refuse to make a decision when it is

uncertain, instead of confidently making a wrong decision in contrast

to the available traditional ML methods. For example, if a patient

visits a doctor for an illness, and the doctor does not know why the

patient is sick, it would be preferable to hear from the doctor that the

results were inconclusive rather than getting an inaccurate diagnosis.

As Albert Einstein once said, “If knowledge is power, knowing what we

do not know is wisdom” [184]. Therefore, abstaining from prediction

enable model knowledge growth by the discovery of novelty (unknown

rejection) and establish model security and safety with the recognition of

uncertainty (failure rejection) [184]. Here failure rejection enables our

method to perform well under class-imbalance, and maintain its perfor-

mance even when the low-quantity of labeled data is used in training

because the model knows when it does not know, and can reject to

make a prediction in favor of keeping the non-rejected predictions ac-
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curate [59]. Meanwhile, unknown rejection allows the discovery and

learning of new knowledge, more specifically, detection of novel mal-

ware families. This makes MalwareDNA a good fit for mission-critical

problems, which include large-scale malware analysis, where the cost

of erroneous predictions could be higher than the cost of rejections or

abstaining predictions [44].

MalwareDNA is be able to:

• Accurately extract latent (not directly observable) identifiers/signa-

tures, from both limited (small quantity of labels), or extra-large unla-

beled multi-dimensional datasets of malware, and to build archives of

these signatures (Figure 1.1-a, Figure 1.1-b, unsupervised).

• Classify in real-time incoming new data malware specimens using these

archives (Figure 1.1-c, semi-supervised),

• and finally, recognize in real-time, previously unseen malware families

and add them to the archive (Figure 1.1-d, semi-supervised).

The dissertation statement is as follows:

By utilizing powerful tensor decomposition methods, and com-

bining its capabilities with a hierarchical and semi-supervised
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approach, we can extract accurate latent (hidden) signatures or

patterns that characterize malware. These signatures can then

be used for downstream classification and detection tasks. In ad-

dition, by incorporating reject-option into our system, we add the

capability to our method to detect novel malware families, which

facilitates knowledge discovery with rejecting to classify unknown

samples, making our system safer and better fit for safety-critical

applications. With reject-option, our model will avoid making

confident wrong decisions, which in return allows maintaining

its performance under class-imbalance and under the presence of

low-quantities of labeled data, which are major the shortcomings

in the field of large-scale malware analysis.

The rest of the dissertation is organized as follows: Chapter 2 provides the

necessary background on dimensionality reduction methods, notation, perfor-

mance evaluation metrics, experiment and baseline configurations, shortcom-

ings in large-scale malware analysis, and the datasets used in the dissertation.

Chapter 3 describes the relevant prior research in the field of large-scale mal-

ware analysis and dimensionality reduction for malware analysis. Chapter

4 introduces the RFoT method and presents the experiments conducted for
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RFoT. Chapter 5 discusses the HNMFk Classifier method, our experiments

with this method, and the ablation studies. The MalwareDNA method and

its experiments are detailed in Chapter 6. Chapter 7 addresses open-source

software considerations and outcomes of the dissertation. Chapter 8 con-

cludes the dissertation, and Chapter 9 outlines future work.
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Figure 1.1: (a) Collection of multi-dimensional data. (b) Building of latent
signature archive. The figure illustrates a blind source separation - unmixed
signals stored in the archive. (c) Real-time identification of signatures or
their combinations, whose components are already in the archive. (d) Real-
time reject-option that can identify unseen signatures and update the archive.
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Chapter 2

Background

In this section we give the background needed for the rest of the disser-

tation. We first reiterate the relevant challenges associated with large-scale

malware analysis in Section 2.0.1 to motivate the methods developed in this

dissertation that address these challenges. We follow this section with the

notations for tensor decomposition methods in Section 2.0.2. We then sum-

marise tensor factorization in Section 2.0.3, NMF in Section 2.0.4, and NMFk

for automatic model determination in Section 2.0.5. Then, we present the in-

tuitive explanation of the ideas behind the hierarchical application of NMFk

in Section 2.0.6. Section 2.0.7 describes the datasets used in our experiments

and the pre-processing considerations we have taken, while Section 2.0.8 de-
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scribes our baselines and experiment setups. We close this section with the

performance evaluation metrics used in our experiments in Section 2.0.9.

2.0.1 Challenges in Large-Scale Malware Analysis

Malware classification is a challenging task, and the quantity and com-

plexity of malware continues to increase rapidly. This makes ML-based mal-

ware classification an important field of study. Ra↵ et al. surveys over 200

research articles on ML-based malware analysis [148]. This survey of the

field emphasizes that the standard ML model evaluation technique, where

the dataset containing malware families are divided into training and test

sets, is flawed when it comes to the malware family classification problem in

the real-life case, since previously unseen malware families will continue to

appear. To this end, they recommend that the ability to perform abstaining

prediction can assist analysts in identifying novel malware. However, prior

work has not widely studied this open problem area for malware classifica-

tion. In our experiments, we evaluate the performance of our solution by

including a set of malware families that were not present in the known or

training set, as shown in Sections 5.0.2 and 6.0.5.

The second challenge is with regard to the need for separate models for
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malware classification and malware family classification tasks. Several ML

solutions have previously been introduced for distinct tasks of malware detec-

tion and malware family classification. The objective of malware detection is

to identify a given file as benign or malicious. In contrast to malware detec-

tion, malware family classification assumes that any given sample is already

known to be malicious, and we want to know to which family it belongs[148].

Existing solutions often use separate ML systems, where one system may be

used for detecting malware, and another system is then used to classify the

detected malware into a given family. A system that can unify these tasks,

such as our proposed solution MalwareDNA, would have operational bene-

fits such as reducing the complexity of maintaining separate systems. The

following challenges pertain to other large-scale malware analysis research.

The majority of prior research for malware family classification, over the

past two decades, has not su�ciently accounted for core evaluation criteria

in their work including learning under class imbalance, ability to identify

new malware, and the cost of production-quality labeled data [133, 148]. For

example, the majority of ML solutions for malware family classification are

unrealistically limited to identifying the top most populous families. This

results in reports of excellent performance on evaluation metrics that do not
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generalize to the real world, limited as they have been to the analysis of

“easy” malware. However, in production systems where the malware clas-

sifiers are used as a critical part of cyber defense systems, the models are

exposed to both prominent and rare malware. This is a high-risk scenario

where identification of both rare and prominent malware is needed. This is

called the class-imbalance problem, and the proposed solutions need to be

evaluated with under class-imbalance to report realistic results. An illustra-

tive example of class-imbalance problem is shown in Section 2.0.7 with the

EMBER-2018 dataset. The EMBER-2018 dataset is extremely imbalanced,

and we showcase how our method handles class imbalance with HNMFk

Classifier in Section 5.0.2, and with MalwareDNA in Section 6.0.5.

In the same vein, many malware classifiers are often supervised models

that require large quantities of labeled data for training. Since labeling of

malware is expensive, the proposed solutions need to be able to yield good

malware detection performance even when trained with low quantities of la-

beled data. In Section 5.0.2 we showcase how HNMFk Classifier handles

label scarcity and maintains its performance even with low-quantities of la-

beled data by compromising the coverage rate. We also demonstrate this

capability with RFoT in Section 4.0.5.
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At the same time, semi-supervised learning in the malware classifica-

tion field has not been widely explored despite its potential benefits [148].

Compared to supervised methods, semi-supervised models often yield better

generalization to new data. This is especially critical given the amount of

new malware reported every day. The high number of new data may result

in distribution shift, where a supervised model may begin losing performance

as the new samples appear. One approach to defend against the distribution

shift is regular re-training of the model; however, this is coupled with the

issue of the cost associated with labeling new malware data. Therefore, a

model that can maintain good performance via superior generalizability to

new data would have significant advantages and cost savings as automated

tool for large-scale malware analysis. All methods described in this disser-

tation (RFoT, HNMFk Classifier, and MalwareDNA) are semi-supervised

approaches.

2.0.2 Tensor Decomposition Notation

Tensor decomposition is a powerful data analysis method capable of ex-

tracting complex patterns from data in an unsupervised manner. By utilizing

tensors, data can be represented in a multi-dimensional space, allowing for

27



the simultaneous exploration of natural relations within and between each

dimension. This higher-dimensional and more complex representation facili-

tates the discovery and interpretation of hidden, multi-perspective informa-

tion within the data. This section aims to summarize the tensor notations. A

summary of the notations utilized in this dissertation can be found in Table

2.1.

Notation Description
x Scalar
x Vector
X Matrix
XXX Tensor
xi ith element in the vector
Xi,j Entry located in row i and column j

Xi: ith row
X:j jth column
XXX

(i) Superscript (i) used to identify the ith random tensor
XXX::j jth slice of a tensor
� Outer product

Table 2.1: Summary of the notations used in this dissertation.

Tensors represent a higher-order extension of matrices and enable the

representation of multi-dimensional data. A first-order tensor corresponds to

a vector, an order-2 tensor is referred to as a matrix, and any structure with

dimensions ranging from 3 through D is denoted as a tensor. Specifically, a

D-dimensional tensor is termed an order-D tensor, with each dimension also

being named the mode of the tensor. For instance, the first dimension of a

tensor is also known as the first mode.

To illustrate the construction of a tensor, let’s first consider matrices
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within a lower-dimensional space. For instance, a matrix X can represent

a bag of words extracted from a collection of scientific papers, possessing

dimensions Documents - Words with a shape of NDocuments ⇥ NWords. In

this matrix, an entry Xi,j signifies the number of times word j appears in

document i.

Utilizing tensors allows for the creation of a higher-dimensional represen-

tation of the data. Taking the example of scientific papers and including

additional information such as the publication year for each paper, we can

represent this data as an order-3 tensor XXX with dimensions Documents -

Words - Time and a shape of NDocuments ⇥ NWords ⇥ NT ime. In this tensor,

an entry XXXi,j,k denotes the frequency of word j appearing in document i at

time k (for instance, by year).

We can extend this example from a 3-dimensional tensor to aD-dimensional

tensorXXX 2 IRN1xN2x···xND , where an entry in the tensor is denoted asXXXi1, i2, · · · , iD

and the indexing ranges of each mode are i1, i2, · · · , iD 2 [0  i1 < N1, 0 

i2 < N2, · · · , 0  iD < ND]. To facilitate notation, we adopt the multi-

index notation and use i to represent the indexing of D modes, such that

i = i1, i2, · · · , iD and XXXi denotes the tensor entry [43, 92].

Let nnz(XXX) represent the set of all non-zero entries in the tensor XXX, and
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let ⌦ denote the set of all entries, including the zeros, indicating that we

have a sparse tensor when nnz(XXX) < |⌦| [43]. Here, |⌦| denotes the size of

the tensor and is calculated as follows:

|⌦| =
DY

d=1

Nd (2.1)

We can use the number of non-zeros and the size of the tensor XXX to

calculate the sparsity of the tensor as follows:

⌘ =
nnz(XXX)

|⌦| (2.2)

Tensors generated from cyber data often exhibit both extreme sparsity

and substantial size. For instance, tensors derived from cyber Netflow data

can demonstrate sparsity as low as ⌘ = 10�8 [58]. In the context of Netflow

data, the tensor’s dimensions might represent the source and destination de-

vices and the timing of network communication events. As shown in Figure

2.1, we depict a tensor with dimensions User -Source-Destination, where each

binary (0 or 1) entry signifies a user engaging in an authentication activity

from a source device to a destination device. Due to the limited communi-

cation between most devices within a network, tensors derived from Netflow
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Figure 2.1: Binary tensor with the dimensions User - Source - Destination.
The background tra�c is shown with gray and anomalies are highlighted in
red.

data often display sparsity (as demonstrated in Figure 2.1). Similarly, diverse

malware features, such as file size, number of sections, and timestamps, can

function as dimensions in the tensor. Each specimen’s feature space aligns

with a single index along each tensor dimension, akin to the Netflow example,

leading to a sparse tensor.
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Since tensors can reach large sizes and thus require large amounts of

memory, leveraging the sparsity of tensors o↵ers an opportunity to circum-

vent storing the entire tensor in memory. Instead, the tensor can be stored in

a Coordinate (COO) format, which comprises a list of non-zero coordinates

and their corresponding non-zero values. In the COO format, each coordi-

nate represents the indexing i, while each non-zero value corresponds to the

entry XXXi.

2.0.3 Tensor Factorization

The higher-order representation of data using tensors allows for the anal-

ysis of latent (hidden) information within the data by considering interac-

tions simultaneously across each dimension, thus facilitating the extraction

and discovery of complex and multifaceted details. Two widely used tensor

decomposition algorithms are the Tucker decomposition, and the CANDE-

COMP/PARAFAC decomposition (CPD) [111]. In this dissertation, with

the RFoT method, we utilize CPD to extract latent patterns from malware

data. CPD compresses the D-dimensional tensor XXX into lower-dimensional

R rank-1 tensors, also referred to as components. The sum of these R rank-1

tensors approximate the original tensor as follows:
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XXX ⇡
RX

r=1

�r · a(1)
r � a(2)

r � · · · � a(D)
r (2.3)

Figure 2.2: Illustration of CPD on a 3-dimensional tensor

Here, � denotes the outer product. The latent factors a(d)
r correspond

to each dimension d, where 1  d  D, and the rth component, where

1  r  R, describes the latent information for the given dimension. Each

a(d)
r is normalized to sum up to 1, and the weight is absorbed by each �r.

An illustration of CPD is provided in Figure 2.2 for a 3-dimensional tensor.

The tensor rank R is a hyper-parameter selected by the user. Determining

the rank R of a tensor is known to be NP-Hard [111]. CPD can be expressed

in a more concise format using the KRUSKAL notation as follows:

XXX ⇡MMM ⌘ J� ; A(1)
,A(2)

, · · · ,A(D)K (2.4)

Here the KRUSKAL tensor MMM is the low-rank approximation of XXX. Each
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A(d) is a matrix of latent factors for dimension d. A(d)
:r is the rth latent factor

for dimension d with size Nd such that we can write A(d) as follows:

A(d) = [a(d)
1 , a(d)

2 , . . . , a(d)
R ] (2.5)

Within each latent factor matrix MMM:: d� 1 = A(d) for dimension d, lin-

early dependent columns A(d)
:r can be present for each r [111]. However, when

considering all latent factor matrices A(1,2,··· ,D) together, the CPD solution is

almost always unique [111, 143]. The uniqueness of CPD allows each compo-

nent to represent distinct events or characteristics of the data. Therefore, the

results obtained from CPD provide interpretable outcomes when examining

each component individually.

In this dissertation, we employ two popular tensor decomposition algo-

rithms with di↵erent properties to heuristically test RFoT’s malware classifi-

cation capability. The first one is the CANDECOMP/PARAFAC Alternat-

ing Least Squares (CP-ALS) tensor decomposition algorithm [20, 28, 111].

To fit the tensor XXX, CP-ALS performs updates using least squares by alter-

nating between each latent factor matrix A(d), while fixing the remaining

A(d�1) factor matrices until convergence to solve the following optimization

function:
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min
A(d)

||XXX�MMM||2 (2.6)

The second tensor decomposition algorithm used in our studies is CAN-

DECOMP/PARAFAC Alternating Poisson Regression (CP-APR), a non-

negative tensor decomposition method that minimizes Kullback-Leibler (KL)

divergence via an updated Multiplicative Update (MU) algorithm [43]. The

CP-APR algorithm includes a non-negativity constraint, which allows the

latent factors to be additive parts of the original data, resulting in improved

interpretability. In CP-APR, the tensor is modeled under a Poisson distri-

bution with the Poisson rate parameter � > 0 as follows:

XXXi ⇠ Poisson(�i) (2.7)

The CP-ALS algorithm was initially included in the widely used MAT-

LAB Tensor Toolbox [22]. With RFoT, we introduce a Python implementa-

tion of CP-ALS 1, utilized in our experiments. For the CP-APR algorithm,

we utilize an existing Python implementation with GPU capabilities that

was previously introduced [61, 72]. For further information on tensors, we

1CP-ALS is available at https://github.com/MaksimEkin/pyCP_ALS
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recommend [111, 147]. More details regarding the CP-APR algorithm can

be found in [43], and additional information about CP-ALS is available in

[28].

2.0.4 Non-negative Matrix Factorization

…

Feature Value

File Size

Malware Specimen #42

Strings Entropy
Number of Strings

Byte Histogram

(a)

…

Malware Signature

50%

40%

30%

20%

10%

0%

Family A

(b)

Figure 2.3: (a) This illustration showcases observable data of a malware
specimen. The observable features encompass file size, string entropy, num-
ber of strings, and byte-histogram of the sample, each with distinct feature
values. (b) This illustration depicts latent signatures that characterize a
particular malware family. These signatures consist of specific feature values
summarizing the characteristics of a group of specimens assumed to belong
to the same malware family.

The dimensionality reduction method utilized in HNMFk Classifier and

MalwareDNA is relies on Non-negative Matrix Factorization (NMF). NMF is

an unsupervised learning approach based on low-rank matrix approximation.

In our studies, NMF is applied to unfolding of the malware tensor data
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over the first mode. NMF aims to extract latent (or hidden) patterns from

observable data. In comparison to directly observable raw data, in large-scale

malware analysis, these latent patterns patterns encapsulate characteristics

of a group of malware, enabling downstream decision making tasks such as

classification.

For instance, in Figure 2.3-a, we present an illustration of observable

features of a malware specimen. When dealing with a dataset consisting

of samples exhibiting similar observable features as shown in Figure 2.3-a,

NMF’s objective is to derive a hidden signature that describes or summa-

rizes the patterns present in this dataset. Figure 2.3-b provides an example

of such a signature representing the patterns of a malware family, referred to

as ”Family A”. While observable features of samples may exhibit variations,

the signature o↵ers a concise summary of these variations and can e↵ectively

identify new incoming samples regardless the small variations in the observ-

able/raw features that do not change the sample’s overall characteristic.

NMF represents an observed non-negative matrix, X 2 Rn⇥m
+ , as a prod-

uct of two (unknown) non-negative matrices, W 2 Rn⇥k
+ , and H 2 Rk⇥m

+ ,

where usually k ⌧ m,n. Here, m is the number of samples, and n is the

number of features. An example illustration of this is provided in Figure
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Figure 2.4: This illustration demonstrates how Non-negative Matrix Fac-
torization (NMF) extracts latent patterns from observable data X, which
includes sample specimens sharing a common feature space. The patterns
are encoded within the latent factor W, which holds the signatures of fea-
tures. Meanwhile, the latent factor H holds the abundances of these features
and clusters the specimens based on these abundances.

2.4. This approximation is performed via non-convex minimization with

a given distance, ||...||dist, constrained by the non-negativity of W and H:

min||Xij �
Pk

s=1 WisHsj||dist. NMF relies on a generative statistical model

predetermined by the choice of the distance ||...||dist. For example, if the

Frobenius norm is chosen as a distance, NMF can be treated as a Gaussian

mixture model [82]. If KL-divergence is chosen, we have a generative Poisson

model [38], equivalent to latent Dirichlet allocation under uniform Dirichlet

prior [51]. In both cases, the number of latent features of the superimposed

components is equal to the size of the small dimension k, and NMF minimiza-
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tion is equivalent to the expectation-minimization (EM) algorithm. In this

probabilistic interpretation of NMF, the observables are the rows of X gen-

erated by latent variables, the rows of the matrix W, with weights (the basis

patterns), represented by the columns of matrix H. Thus, each row Xi: of X

is generated from a probability distribution with mean Xi: =
Pk

s=1 HisWs:.

2.0.5 Automatic Model Determination

The NMF minimization requires prior knowledge of the latent dimension-

ality, k (the number of latent features), which is usually unavailable. It is

known that choosing too small a value of k leads to a poor approximation of

the observables in X (under-fitting), while if k is chosen to be too large, the

extracted features are not easily explainable because they also fit the noise in

the data (over-fitting). In other words, choosing k is equivalent to estimating

the number of parameters of the model, which is a well-known but di�cult

problem.

In general, the existing partial solutions of this problem are heuristic.

Among these solutions is Automatic Relevance Determination (ARD) [123]

which was first modified for Principal Component Analysis [30], and then for

NMF [128, 162]. Another approach is based on an assumed stability of the
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NMF solution, and was proposed to identify the number of stable clusters in

the observational matrix X [36]. A recent model selection technique, called

NMFk [11], has been successfully used to decompose the largest collection of

human cancer genomes [12]. NMFk integrates classical NMF-minimization

with custom clustering and Silhouette statistics [154], and combines the ac-

curacy of the minimization and robustness/stability of the NMF solutions,

when a bootstrap procedure (i.e., generation of a random ensemble of slightly

perturbed input matrices) is applied to estimate the number of latent fea-

tures, see for example, [13]. Recently, NMFk was applied to a large number

of synthetic datasets with a predetermined number of latent features, and

it was demonstrated its superior performance of correctly estimating k in

comparison to the other known heuristics [132]. The superior performance

of NMFk method as a model selection was also demonstrated in identifying

mutational genome signatures in a large set of cancer genomes, both in prac-

tice [14] and in large set of synthetic cancer genomes with predetermined

number of latent features [98]. In addition, it was shown that NMFk per-

forms better than spherical k-means and other methods for topic extraction

[170]. Our numerical experiments in Section 5.0.2 demonstrate that NMFk

performs better than the predetermined k=2 case. Therefore, we use NMFk
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as the core factorization method with automatic model selection needed to

extract the ”clean” clusters of malware, after the NMF dimension reduction.

In this work, we are making extensive use of NMFk, and for completeness

we provide the pseudocode for it in Algorithm 1 and a description of it, as

follows:

Algorithm 1: NMFk(X, kmin, kmax, M , Sill thr = 0.8)

Require: : X 2 Rn⇥m
+ , kmin, kmax , r

1: for k in k
min to k

max do . Start and end process for NMFk
2: for q in 1 to M do . Num. of Perturbations on each k
3: XXX::q = Perturb(X) . Resampling X to create a random ensemble
4: WWW::kq,HHH::kq = NMF(XXX::q,k)
5: end for
6: WWW

all=[WWW::k1,. . . ,WWW::kM ] and HHH
all=[HHH::k1,. . . ,HHH::kM ]

7: Ŵ̂ŴW, Ĥ̂ĤH = customCluster( WWWall,HHHall)

8: eWeWeW::k = medians( Ŵ̂ŴW)

9: HHH
reg
::k = NNLS(X,fW::k) . Column-wise regression of H with fW and

column of X
10: sk = clusterStability(Ŵ̂ŴW)

11: errk = reconstructErr(X,fW::k , Hreg
::k ) . Column-wise

reconstruction error for L-statistics
12: end for
13: errall=[errkmin ,. . . ,errkmax ]
14: kopt = PvalueAnalysis(errall ,kmin,kmax,sk,Sill thr) . Predicted k value

using Wilcoxon
15: return eWeWeW::kopt , HHH

reg
::kopt , k

opt

Ensure: k = k
opt, eWeWeW::kopt 2 Rn⇥k

+ ,HHHreg
::kopt 2 Rk⇥m

+ , X = eWeWeW::kopt HHH
reg
::kopt

1. Resampling : Based on the observable matrix, X, NMFk creates an
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ensemble of M random matrices, [XXX::q]q=1,...,M , with means equal to the

original matrix X. Each one of these random matrices XXX::q is generated

by perturbing the elements of X by a small uniform noise, such that:

XXXijq = Xij + �, for each q = 1, ...,M , where � is the small error.

2. NMF minimization: We use the Frobenius norm-based multiplicative

updates (MU) algorithm [116] to explore di↵erent numbers of latent

features, k, in an interval [kmin
, k

max], for each one of the generated M

random matrices.

3. Custom clustering: For each k 2 [kmin
, k

max], NMF minimizations of

theM randommatrices, [XXX::q]q=1,...,M , results inM pairs [WWW::kq;HHH::kq]q=1,...,M .

Further, NMFk clusters the set of theM ⇤k latent features, the columns

of WWW::kq. The NMFk custom clustering is similar to k-means, but it

holds in each one of the clusters exactly one column from each of the

M NMF solutions. This constraint is needed since each NMF min-

imization gives exactly one solution WWW::kq with the same number of

columns, k. In the clustering, the similarity between the columns is

measured by the cosine similarity metric.

4. Robust W and H for each k: The medians of the clusters, eWeWeW::k, are
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the robust solution for each explored k. The corresponding mixing

coe�cients HHHreg
::k are calculated by regression of X on eWeWeW::k.

5. Cluster stability via Silhouette statistics: NMFk explores the stability

of the obtained clusters, for each k, by calculating their Silhouettes

[154]. Silhouette statistics quantify the cohesion and separability of

the clusters. The Silhouette values range between [�1, 1], where �1

means an unstable cluster, while +1 means perfect stability.

6. Reconstruction error: Another metric NMFk uses is the relative recon-

struction error, R = ||X�XXX
rec
::k ||/||X||, where XXXrec

::k = eWeWeW::k ⇤HHHreg
::k , which

measures the accuracy of the reproduction of initial data by a given

solution and the number of latent features k.

7. L-statistics: NMFk uses L-statistics [171] to automatically estimate

the number of latent features. To calculate L-statistics for each k,

NMFk records the distributions of the column reconstruction errors,

ei = kX:j �XXX
rec
:jkk/kX:jk; j = 1, ...,m. L-statistics compares the distri-

butions of column errors for di↵erent k by a two-sided Wilcoxon rank-

sum test [91], which evaluates whether two samples are taken from the

same population.
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8. NMFk final solution: The number of latent features, kopt, is determined

as the maximum number of stable clusters corresponding to a good ac-

curacy of the reconstruction. The Wilcoxon rank-sum test determines

the p-value of the given k
opt. NMFk is ”looking” for a distribution of

the column errors such that the next distributions (each one with big-

ger k) are statistically the same, and the model is fitting the noise. The

L-statistics used in conjunction with the condition that the minimum

Silhouette be greater than 0.80. The threshold of 0.80 is selected to

place the predicted k
opt prior to a steep decline in the minimum Sil-

houette. The corresponding eWeWeW::kopt and HHH
reg
::kopt are the robust solutions

for the low-rank factor matrices.

We provide a sample Silhouette score and relative error plot produced

by NMFk for two factorizations, to demonstrate the selection of k, in Fig-

ure 2.5. The presented NMFk framework estimates the latent feature count

based on two criteria, namely a high minimum Silhouette score, and a low

relative reconstruction error, which corresponds to a stable NMF solution.

The number of features with lower minimum Silhouette scores correspond

to overlapping clusters or scattered clusters. On the other hand, the rela-

tive reconstruction error decreases monotonically with the number of latent
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X(n,615) X(d,615)

Figure 2.5: Sample Silhouette and relative error graphs obtained from NMFk
is shown for the matrices X(n,615) and X(d,615) which are formed using 1,000
malware specimens from 10 families. X(d,615) consist of samples extracted
from a single cluster after the the first NMFk procedure on X(n,615).

features. This decrease is more prominent up to the estimated number of

topics followed by a reduced change in the error. As observed in Figure 2.5,

with the further increase in the number of latent features past the estimated

k, there is a sudden decline in the Silhouette score due to the over-fitting

phenomenon as the model tends to fit noise.

In this work, we use the publicly available version of NMFk developed by

our team, named Tensor Extraction of Latent Features (T-ELF) [69]2.

2T-ELF is available at https://github.com/lanl/T-ELF
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2.0.6 Hierarchical Modeling

The NMF and Hierarchical NMF [27, 87, 114] strategies have been used

successfully for document clustering [39, 177], and topic modeling [67, 73, 86,

156, 169]. For HNMFk Classifier and MalwareDNA we use NMFk to compute

clusters of malware specimens by applying it in a hierarchical manner, where

successive node expansions focus on the subset ofX obtained from the parent

cluster. Here the clusters are determined using the rows ofH via H-clustering

that cluster the specimens’ coordinates in the reduced space, also called

fuzzy-clustering (i.e. the columns of the matrix H with argmax operation)

[171]. When going deeper in the graph towards the leafs, we investigate

di↵erent characteristics of the specimens in the same group, while utilizing

the labels as a reference, and achieve better separability of the malware

specimens.

Let us consider a simple example from hierarchical document clustering.

We assume three well-curated clusters in a text corpus of news articles about

sports, technology, and the economy. If we cluster these documents with

NMFk and H-clustering we can obtain three ”super” clusters for sports,

technology, and the economy. We can further divide the cluster containing

sport articles into sub-topics, such as soccer, football, tennis, skiing etc.
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by applying additional iterations of NMFk. In our analysis, we choose to

select back the specimens corresponding to each one of the super clusters

and apply NMFk again. This is the idea behind the hierarchical approach,

and consequently a hierarchical approach is used in our methods HNMFk

Classifier and MalwareDNA to further separate more heterogeneous clusters

based on the known (or labeled) malware instances.

In our semi-supervised setting, the experimental setup contains data with

labeled (known/training) and unlabeled (unknown/testing) malware speci-

mens. This allows us to choose a scoring function, not based on information

gain (such as normalized discounted cumulative gain from information re-

trieval [99]) [114] or a fixed threshold using the number of specimens in the

cluster [87] to determine which node to take further. Instead, we use a clus-

ter uniformity score that measures the stability of the cluster, based on the

known specimens in the cluster, as the node expansion criteria for a clus-

ter. In general, the application of NMFk to semi-supervised data will place

into each of the final clusters both labeled and unlabeled malware specimens.

This allows us to continue to build the hierarchical graph until the further

expansion of a particular node is stopped if no unlabeled or labeled samples

are present in this node, or if the cluster uniformity score calculated based
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on the known samples passes the provided threshold.

W(n,kopt)

First NMFk

W(d,kopt) W(g,kopt)

W(a,kopt) W(c,kopt) W(f,kopt) W(h,kopt)

W(j,kopt)W(e,kopt)W(b,kopt)

X(n,kopt) X(d,kopt) X(g,kopt)

X(a,kopt) X(c,kopt)

X(b,kopt) X(e,kopt)

X(f,kopt)

X(j,kopt)

X(h,kopt)

Figure 2.6: The path of the hierarchical graph formed by the NMFk is shown
using 1,000 malware specimens containing a total of 10 malware families. Af-
ter each factorization, the clustering is visualized by reducing the dimensions
of W using t-SNE. Dashed arrows are used to indicate the existence of an
another sub-tree from the node. Since we are obtaining kopti subsets of speci-
mens from current X at each stage, n > a � b � c � d > e � f � g > j � h.

We provide an example visualization of the latent factors obtained from

NMFk with a hierarchical setting in Figure 2.6. Note that on this specific ex-

ample W-Clustering (apply clustering over the columns of W is used, instead

of H-Clustering). Here, we apply dimensionality reduction using t-SNE [168]

to each latent factor W to plot the clusters. Each point in the embedding of

W is colored based on the family to which the specimen belongs. Here the

clusters are expanded until all the samples in the cluster belong to a single

class. The t-SNE visualization show how the hierarchical clusters of malware

families are formed, and how the clusters become more homogeneous as we
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perform additional applications of NMFk.

Figure 2.7: This visualization showcases a segment of a graph generated by
hierarchically applying NMFk to malware data. It emphasizes the compre-
hensive use of NMFk to separate mixed signatures, resulting in a graph with
a topological structure where samples are progressively partitioned until a
distinct signature is identified.

Figure 2.6 demonstrates a relatively small application of the hierarchical

approach, while Figure 2.7 further showcases the graph produced by this

method. Although Figure 2.7 displays only a small segment of the entire

graph, it is apparent that the graph is extensive and structured in a topology

where NMFk is applied multiple times within each subgraph until a unique

signature is obtained. Additionally, each subgraph, or depth level, operates

independently of the others. This independence allows the NMFk operations
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performed at each node to be executed on a High Performance Computing

(HPC) system in an embarrassingly parallel manner. This parallelization is

helpful in accelerating the computation within the hierarchical approach. We

introduce our HPC considerations in Section 6.0.4.

2.0.7 Datasets and Pre-processing

In our experiments, we use the EMBER-2018 dataset [15] for the frame-

works RFoT and HNMFk Classifier. In addition to the EMBER-2018 dataset,

we incorporate an additional dataset named MOTIF [103] for experiments

involving the MalwareDNA framework. This subsection will summarize these

two datasets and detail the preprocessing steps applied to our data.

EMBER-2018 Dataset

Collection of malware data has challenges such as copyright issues, la-

beling di�culty, and security precautions. Therefore, compared to other

ML fields with abundant data (such as text and images), the malware iden-

tification community has lacked a benchmark dataset su�cient to enable

reproducibility and comparison of new methods. To address this issue, An-

derson et. al. released the EMBER-2018 dataset [15]. Since its release,
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EMBER-2018 has become a popular benchmark dataset for ML-based mal-

ware analysis methods.

Set Families Samples Novel Families
Known (Default Train) 2,730 289,026 1,982
Unknown (Default Test) 916 99,216 168
Set Min Family Max Family Samples/Family
Known (Default Train) 1 16,689 105.8
Unknown (Default Test) 1 19,260 315.5

Table 2.2: EMBER-2018 dataset default train and test set split and malware
family and sample counts are displayed. Novel families for the known (or
train) set are the families that only exist in the training set. The novel
families for unknown (or test) set are the families that only exist in the
test set (i.e. we do not see these families during inference, or we do not
have known specimens for reference). Min Family and Max Family columns
show the minimum and maximum number of samples exist for a family in
the dataset. For instance, there are malware families with single sample in
both known and unknown sets. Samples/Family column shows the average
number of samples per family.

EMBER-2018 is a collection of PE header and meta-data information

extracted from 1.1 million benign and malicious Microsoft Windows Portable

executable binaries, out of which 800,000 have labels.

One advantage of using the EMBER-2018 dataset is that the distribution

of the family classes resembles real-world cases. The training portion of the

dataset contains malware families that do not exist in the test portion of the

data. Similarly, the test set contains novel malware families, or the malware

families that do not exist in the training set. This is also shown in Table
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Figure 2.8: Distribution of the malware families in EMBER-2018 dataset.
Count of family classes are shown in log scale for both the training and test
set. Both the training and test sets has an extremely imbalanced classes of
malware families, and the test set of contains set of novel malware families.

2.2. 1,982 of the malware families, making over 11 thousand samples, are not

seen again in the test set. There are 168 novel families, forming 363 samples,

that we do not have any reference of in the training set. At the same time,

malware family classes in EMBER-2018 are extremely imbalanced. Figure 2.8

shows the distribution of the malware families for both the training and test

set. For instance, there are malware families that consist of single samples,

including the specimens from the novel families (which can also be seen at

the right side of Figure 2.8 with red-dashed line). In fact, the majority of

the malware families in the dataset consist of less than 10 samples. We next

proceed to the pre-processing of the features to remove the outliers.

During our experiments, we represent each file in the dataset as a col-

lection of features from both general file meta-data as well as PE header

information. Each of the features are concatenated vertically to form the
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final features matrix. This is equivalent to forming an 11 dimensional ten-

sor, with the dimensions Samples ⇥ Feature 1 ⇥ Feature 2 ⇥ ... ⇥ Feature

10, and taking the mode-1 unfolding of the tensor. Specifically, we use the

following features:

1. byte histogram: a vector of size 256 where each entry represents the

number of times a certain byte occurs in the file.

2. byte entropy : normalized joint distribution of entropy and byte values.

3. print table distribution: distribution of characters obtained from print-

able strings with minimum of 5 consecutive printable characters in the

binary.

4. strings entropy : measure of randomness of printable strings present in

the malware.

5. number of strings : number of printable strings.

6. file size: size of the binary in bytes.

7. number of exports : number of functions exported by the malware.

8. number of imports : number of functions imported by the malware.
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9. code size: size of .text or code section of the PE header in bytes.

10. number of sections : number of sections present in PE header.

Our dataset consists of heterogeneous features containing outlier values.

Since NMF is susceptible to outliers (extremely large or small values in the

rows of initial data), see for example [182], we normalize the features used in

our analysis. This normalization prevents the larger values in the rows of the

initial data to bias/skew the NMF optimization procedure by favoring some

of the columns in X, see details in Ref.[98]. Note that the case of outliers

a↵ecting NMF optimization is distinct from the characteristics makeup of a

novel malware family: After the normalization, the novelty of the malware

belonging to unknown (or never seen before) family reflects on the shape of

its latent signature (the columns of matrix W).

Figure 2.9: Static malware analysis based features from PE header files and
malware meta-data used in the analysis shown before and after the mapping
of the outliers, defined by Z = 3 statistical score, for both training (known
specimens) and test sets (unknown specimens).
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In our normalization, Z-scores are used to remap the outliers that are

more than or less than 3 standard deviations away from the mean. These

outliers are mapped to the point that is exactly 3 standard deviations away

from the mean. In Figure 2.9, we show the histogram of feature values for

pre- and post-processing. The normalization was most prominent among the

features byte histogram, byte entropy, and print table distribution. Finally,

we scale the values to be between 0 and 1.

MOTIF Dataset

For the experiments involving the MalwareDNA framework, we also use

the Malware Open-source Threat Intelligence Family (MOTIF) dataset [103].

MOTIF comprises 3,095 malware samples distributed across 454 families. In

contrast to MOTIF, the family labels in the EMBER-2018 dataset are deter-

mined using AVClass, resulting in weakly labeled classes due to the inherent

inaccuracies in AVClass’s family labeling [185]. AVClass occasionally retains

generic family names, shows inconsistency in the use of aliases for malware

families, and is susceptible to errors in antivirus signatures which can af-

fect its accuracy. Despite these imperfections, AVClass remains one of the

accepted methods for obtaining a large quantity of malware family labels.
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In comparison, the MOTIF dataset provides ground truth family labels,

o↵ering a more reliable source for this aspect of the analysis. We process

the MOTIF dataset using the same static-analysis-based features and ap-

ply identical normalization techniques as those used with the EMBER-2018

dataset.

2.0.8 Experimental Setups and Baselines

In this section we provide a summary of our experimental setup as well

as describe our baseline models.

Experimental Data Setups

In this dissertation, we employ various experimental setups, which are

provided in this section and are also summarized in Table 2.3. Specifically,

in Section 4.0.5, where we present our analysis for the RFoT framework,

we randomly sample both benign and malicious software specimens from the

EMBER-2018 dataset. This sampling is conducted ten times, each consisting

of 10,000 specimens. For RFoT experiments, we used 30% of 10,000 malware

and benign instances for each 10 subsets as testing or unknown set.

Similarly, the EMBER-2018 dataset is utilized for the analysis involving
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Method Section Dataset Size Benign-ware # Families # Novel Family Class-imbalance
RFoT 4.0.5 [15] 10K 3 Random — —
HNMFk Classifier 5.0.2 [15] 10K — 10 — —
HNMFk Classifier 5.0.2 [15] 10K — 10 — —
HNMFk Classifier 5.0.2 [15] 10K — 10 — —
HNMFk Classifier 5.0.2 [15] 388k+ — 2,899 168 3
HNMFk Classifier 5.0.2 [15] 10K — 10 — —
MalwareDNA 6.0.5 [15] 1K-20K 3 4 1 —
MalwareDNA 6.0.5 [15] 10K — 7 1 3
MalwareDNA 6.0.5 [15] 10K — 7 1 3
MalwareDNA 6.0.5 [103] 529 — 8 1 —
MalwareDNA 6.0.5 [15] 15K 3 7 1 —

Table 2.3: Experiment setups are summarized for each method, alongside
the corresponding section number. The Dataset column lists the dataset
used in each section for the specified method. Citation [15] for the Dataset
refers to EMBER-2018 while the citation [103] refers to the MOTIF dataset.
The Size column provides the total size of the dataset. A check-mark in
the Benign-ware column indicates that benign samples were included in
the analysis. The # Families column lists the number of malware families
included in the dataset, where ”Random” denotes that the malware was
sampled randomly and includes a mix of di↵erent families. Finally, the #
Novel Family column specifies the number of malware family classes that
are present only in the unknown or testing set for analysis. ”—” indicates
that the given column or experimental setup consideration is not taken for
the method in the provided section.

the HNMFk Classifier. For the experiments assessing the performance of

the HNMFk Classifier, we use a smaller subset of the data under unrealistic

conditions. This subset comprises 10,000 specimens selected from the top 10

most populous malware families, with 1,000 specimens per family. These ex-

periments are detailed in Sections 5.0.2, 5.0.2, 5.0.2, and during the ablation

studies for the HNMFk Classifier in Section 5.0.2. For these tests, the data

is randomly sampled 10 times.

Furthermore, we use the entire EMBER-2018 dataset—excluding the be-
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nign specimens—under realistic conditions to evaluate the HNMFk Classifier,

as discussed in Section 5.0.2. In this more extensive experiment, the dataset

is predefined with default training and testing splits of EMBER-2018: the

training set contains over 289,000 specimens from 2,730 malware families,

while the test portion includes approximately 99,000 samples from 916 mal-

ware families. Details of the dataset sample sizes and family statistics are

provided in Table 2.2.

For MalwareDNA, we employ several di↵erent experimental setups. Ini-

tially, using the EMBER-2018 dataset, Section 6.0.5 presents the preliminary

results for MalwareDNA, where we randomly sample 1,000 benign and mal-

ware specimens from four specific families: Ramnit, Adposhel, Emotet, and

Zusy. In these experiments, Ramnit is chosen to represent the novel malware

family.

We then expand these experiments by increasing the sample size to 20,000

specimens. This sampling is conducted once and does not include confidence

intervals for the results. To address this, subsequent experiments involve

randomly sampling 10,000 malware specimens ten times from the EMBER-

2018 dataset, focusing on the top seven populous malware families: Ramnit,

Adposhel, Emotet, Fareit, InstallMonster, Xtrat, and Zusy. Ramnit is again
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Malware Family Training Set Testing Set
xtrat 4853.9 (+- 12.6) 543.1 (+- 12.2)
installmonster 3750.3 (+- 10.2) 416.7 (+- 11.5)
adposhel 3216.4 (+- 6.6) 361.6 (+- 5.6)
zusy (rare family) 638.0 (+- 7.0) 67.0 (+- 6.9)
emotet (rare family) 232.2 (+- 3.8) 25.8 (+- 3.8)
fareit (rare family) 97.2 (+- 1.9) 11.8 (+- 1.4)
ramnit (novel family) 0.0 1029.0 (+- 2.4)

Table 2.4: Distribution of malware families in training and testing sets re-
ported with mean number of instances and the confidence interval over 10
sample trials. This setup is used for MalwareDNA experiments in Sections
6.0.5 and 6.0.5.

selected to represent the novel family, particularly when assessing the confi-

dence metrics for the reject-option in Section 6.0.5, and when demonstrating

the performance of MalwareDNA under class imbalance in Section 6.0.5. For

the class-imbalance experiments, with the increasing under-sampling-rate we

under-sample the families randomly ten times Zusy, Emotet, and Fareit to

highlight the rare families (i.e. Fareit is the rarest class). We summarize

the dataset used in the class-imbalance experiments in Table 2.4. This same

dataset was also used to test our confidence methods in the aforementioned

Section 6.0.5. Finally, the capabilities of MalwareDNA for distinguishing be-

nign samples are showcased in Section 6.0.5 where we randomly sample the

same seven malware families ten times, select Ramnit as the novel family,
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and also include benign specimens in the sampling, extending the data size

to 15,000.

Meanwhile, in the experiments that utilize the MOTIF dataset, as de-

scribed in Section 6.0.5, we focus on the top eight most populous malware

families from MOTIF dataset and select one of the families randomly to rep-

resent the novel specimens. We randomly sample these families ten times to

create datasets, each consisting of about 500 specimens.

Experimental Baseline Setups

We compare our method against the well-established supervised malware

classifiers, XGBoost [42] and LightGBM [108]. Additionally, we enhance

these baselines by incorporating the SelfTrain algorithm [179] to develop

semi-supervised models. Previous studies have benchmarked these models

against the EMBER-2018 dataset [15, 124]; however, our experiments chal-

lenge these models further by requiring them to classify malware families

under conditions of extreme class imbalance and to detect novel malware

families simultaneously. Our baseline models are tuned using Optuna [9]

across between 50 to 200 trials, employing between 3 to 5-fold stratified

shu✏e cross-validation to ensure robustness and reliability in our evalua-
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tions. The variations in the Optuna settings across di↵erent experiments are

driven by the distinct computational demands of each case. Consequently, in

each section that presents our experimental results, we revisit the tuning and

dataset considerations. This repeated emphasis ensures a thorough under-

standing of the adjustments made and aligns the experimental setups with

their respective computational requirements. In our experiments with HN-

MFk Classifier, we also include a Multi-Layer Perceptron (MLP) [90] model

as a baseline in Section 5.0.2. We tune this MLP baseline with HyperBand

Tuner [117].

In experiments where we randomly resample the dataset, we report our

results along with a 95% confidence interval (CI) for the ten runs. This

statistical approach provides assurance about the reliability and consistency

of our findings.

2.0.9 Performance Evaluation Metrics

We utilize several traditional machine learning performance metrics, in-

cluding F1-score, precision, and recall, to evaluate our results. Additionally,

we employ the Area Under the Curve of Risk-Coverage (AURC) in exper-

iments where the reject-option was enabled [52]. This section provides a
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summary of these metrics.

F1, Precision, Recall

To evaluate the performance of our method and the baseline models, we

use Precision, Recall, and F1 score. Precision score measures the ability

of the model’s correctly identify the positive class and can be calculated as

follows:

Precision =
TP

TP + FP
(2.8)

where TP is the number of true positive predictions, FP is the false

positives. The Recall metric measures the extent to which model can detect

the positive class, and it is calculated as follows:

Recall =
TP

TP + FN
(2.9)

where FN is the number of false negatives. F1 score is calculated using

both the Precision and Recall scores together; therefore, F1 score is only

high when both Precision and Recall are high. F1 score can be calculated as

follows:
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F1 = 2 · Precision · Recall
Precision + Recall

(2.10)

More specifically, F1 can be calculated as follows:

F1 =
TP

TP +
1

2
(FP + FN)

(2.11)

Area Under the Risk Coverege (AURC)

The performance of our method, when the reject-option is enabled, is

quantified using the Area Under the Curve of Risk-Coverage (AURC) [52].

The Risk-Coverage curve illustrates the trade-o↵ between coverage (the num-

ber of samples for which a non-abstaining prediction was made, i.e., non-

reject predictions) and risk, which is measured using 0/1-loss or 1�score-metric

(the score-metric could be, for instance, F1-score or accuracy).

The AURC score, which ranges from 0 to 1, is a metric where a lower

AURC is preferred as it indicates reduced risk at any given level of cover-

age. This curve provides a clearer picture of the trade-o↵s between model

performance and the proportion of inferences where the model either made a

decision or abstained. Analysts or users of our models can use this curve to
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select the optimal balance between risk (model performance) and coverage

according to their specific requirements.
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Chapter 3

Related Work

Here we give a summary of relevant work pertaining to large-scale mal-

ware analysis, class-imbalance and detection of novel malware families, and

use of dimensionality reduction techniques in malware analysis and cyber

security.

3.0.1 Large-scale Malware Classification

ML-based automated detection and characterization of malware has been

a longstanding area of research. Deep learning has proven to be an e↵ective

method for classifying malware in a supervised manner. Vinayakumar et al.

utilized shallow neural networks to detect malware using PE header features
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[146]. Similarly, Fabian et al. employed neural networks, designing their

method for use in environments with limited computational resources [83].

In contrast to these approaches that utilize a selected set of static malware

features, Ra↵ et al. introduced a deep learning architecture named MalConv,

aiming to classify malware directly based on the entire raw byte-sequences

of the binary [149]. These methods leverage static malware analysis-based

features for malware classification. While static malware features can e↵ec-

tively identify malicious files, dynamic malware features can o↵er additional

insights into the executable. Vinayakumar et al. adopt a multi-modular ap-

proach using Deep Neural Networks (DNN), performing classification using

features from static analysis, dynamic analysis, and gray-scale malware im-

ages [172]. In our work, we take the prior approach for malware with static

analysis based features and use PE malware features in our analysis.

Several prior studies have focused on malware detection using images gen-

erated from malware [119, 120, 130, 178, 181]. This includes research on clas-

sifying malware visualizations utilizing an ensemble of random forests [153],

as well as another study employing a semi-supervised approach to cluster

gray-scale malware images [6]. Additionally, Wang et al. utilized a semi-

supervised approach with gray-scale malware images [173]. In their research,
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byte n-grams were translated into fixed-size gray-scale image vectors as train-

ing features. Wang et al. perform classification with the gray-scale image

vectors using a 1-dimensional Convolutional Neural Network (CNN), a su-

pervised deep learning method, that is strengthened using a semi-supervised

Generative Adversarial Network (SGAN).

Previous studies have also examined classical tree-based ML methods

for malware classification. Kumar et al. demonstrated that XGBoost is an

e↵ective model for classifying Windows PE malware, achieved through low-

resource feature selection [115]. Pham et al., also using the EMBER-2018

dataset, illustrated that statistical summaries of the original PE features can

enhance detection results. They employed LightGBM, which surpassed the

previously introduced deep learning solution MalConv while requiring fewer

resources [141]. In our experiments, we also test our model against EMBER-

2018, benchmarking it against XGBoost and LightGBM, which are consid-

ered state-of-the-art baseline models on the EMBER-2018 dataset. While

these methods are supervised solutions, we explore semi-supervised learning

for its superior generalization capability.

The majority of the aforementioned work, which reported excellent mal-

ware detection capabilities, is based on supervised learning. However, super-
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vised models often encounter performance degradation in production when

confronted with specimens that do not conform to the same distribution

observed during training. Qi et al. tackled this issue by integrating an un-

supervised domain adaptation technique based on adversarial learning into

LightGBM for static malware detection [142]. Their approach extends Light-

GBM to learn domain-invariant features by using the predictions generated

from each decision tree in the model as a feature space, subsequently em-

ploying these features as input into the adversarial learning framework.

Another area that has garnered increasing interest is the application of en-

semble learning to augment the predictive capabilities of malware classifiers.

In pursuit of this, previous research has delved into an ensemble approach

for Windows malware classification utilizing static features. Atluri demon-

strated that various tree-based ensemble models, such as Random Forests,

Bagging Decision Tree Classifier, and Gradient Boosting Classifier, among

others, can be used together in a single framework, named Voting Ensemble

Classifier (VEC), to achieve enhanced detection of Windows PE malware

[18]. Similarly, Ramadhan et al. explored a comparable method by creating

a voting-based ensemble model employing LightGBM, XGBoost, and Logis-

tic Regression [151]. Their study showed that an ensemble of classifiers, each
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with its distinct inductive biases, could result in increased accuracy compared

to any individual model alone, as each member of the ensemble complements

the weaknesses of others. Additionally, the framework of ensemble learn-

ing has been applied in the realm of deep learning for malware detection

by Dahl et al. [46]. The authors demonstrated that an ensemble of neural

networks employing voting, alongside a novel feature selection method based

on dimensionality reduction and random projections, significantly improves

malware identification.

While the aforementioned prior work on ensemble learning utilized the

voting method, Azeez et al. adopted a stacking approach employing an en-

semble of CNNs to create a derived dataset based on the decisions made by

the base models. This derived dataset was then used as input to the final

prediction layer, incorporating an ExtraTrees classifier to enhance predic-

tion accuracy [19]. Similarly, Gupta et al. also applied a stacking approach

employing an ensemble of diverse supervised classifiers [88]. However, in con-

trast, Gupta et al. carefully selected the best-performing classifiers within

the ensemble by initially ranking them based on their performance. Subse-

quently, the highest-ranking base models were integrated into the stacking

ensemble layer, further enhancing the capability for malware detection. In-
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spired by the success of ensemble learning, we incorporate an ensemble based

approach to RFoT. RFoT leverages an ensemble framework to randomly se-

lect a set of tensor configurations, where the members of the tensor dimen-

sions and entries randomly selected from the malware feature-set, and the

tensor rank is selected randomly for each member of the ensemble.

As part of the semi-supervised scheme, all of our methods leverages clus-

tering and similarity scores for the categorization of novel samples and classi-

fication of malware and malware families. Clustering has been integrated into

ensemble learning frameworks for malware identification as well. Ye et al.

presented a hybrid framework that constructs base clusters from an ensemble

of clustering algorithms separately applied to Term Frequency-Inverse Docu-

ment Frequency (TF-IDF), built from instruction frequency and instruction

n-grams [180]. This approach utilizes an ensemble of clustering algorithms

with distinct characteristics, such as hierarchical clustering and weighted

subspace K-medoids, to form the base clusters. These clusters are then uti-

lized to extract the signatures that di↵erentiate malware families. Similarly,

Zhang et al. proposed a similar framework based on an ensemble of hybrid

clustering algorithms [186].

Similar to clustering ensembles, distance metrics have been incorporated
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within an ensemble learning structure. Kong et al. utilized similarity met-

rics between pairs of malware to categorize malware families [112]. The

authors derived similarity measurements using a distinct set of features such

as opcodes, system calls, and file system activity. These new distance-

based feature vectors, each derived from di↵erent malware features, were

then employed to train an ensemble of classical ML models. Furthermore,

a similarity-based approach was previously employed by Ra↵ et al., where

they introduced the BurrowsWheeler Markov Distance (BWMD), an e�cient

similarity metric. This metric is based on embedding data into a fixed-size

vector space, demonstrating its e↵ectiveness in clustering malware [150]. Fi-

nally, the malware similarity for clustering IoT malware in an unsupervised

manner was presented in [25].

Reference Dataset(s) Dataset Size Num. Classes Imbalanced Data Novel Malware Method
Ours EMBER-2018 [16] 388k 2,898 3 3 Semi-supervised
[94] Custom 6.5m 100 3 — Supervised
[100] Drebin [17] 5k 40 — — Supervised
[172] Malimg [131] & Custom 9k & 10k 25 & 10 — — Supervised
[25] Custom 10k 14 3 — Unsupervised
[183] EMBER-2018 [16] 750k 21 — — Supervised
[121] EMBER-2017 [16] 500k 21 3 — Supervised
[160] VirusShare [78] 2.7k 12 — — Supervised
[8] Malimg [131] 21k 9 — — Supervised
[127] Custom 115k 8 3 3 Supervised
[89] Custom 31k 5 — — Supervised

Table 3.1: The comparison of prior and our work in dataset size, number
of classes, consideration of imbalanced data and novel malware families, and
the method used. Custom refers to the proprietary datasets, or the custom
build datasets by the authors.

Several previous works have looked at malware family classification, how-
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ever, they tend to use only the most common malware families, did not

consider novel malware families, or used manually balanced datasets when

reporting their results [8, 25, 80, 89, 100, 121, 160, 172, 183]. In contrast,

when comparing to the baseline models, we report our results when classify-

ing specimens belonging to the whole ensemble of malware families present

in the EMBER-2018 dataset with an imbalanced setup which also includes

novel unknown specimens for HNMFk Classifer in Section 5.0.2. We further

incorporate these considerations in our analysis for MalwareDNA in Section

6.0.5, where we showcase the model’s performance when detecting novel mal-

ware families and when working under class-imbalance. This setup allows our

results to be more like what malware analysts would see in the real world.

It has already been shown that the class-imbalance problem degrades the

performance of popular methods developed for large-scale malware analysis

[155]. Rajvardhan et al. used BERT to classify imbalanced malware data

with high accuracy [135]. While this work only focused on malware/benign-

ware classification, our aim is to classify malware families. Several other prior

works also considered class imbalance, however, they still targeted a small

number of top malware families, and rare specimens are mapped to a single

”others” class [121, 127]. To the best of our knowledge, the most realistic and
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the largest malware family classification work was done by Huang et al. [94],

which targeted 100 classes where two of the classes include the one for benign

samples and another for the rare specimens. This type of setup, although

it considers class imbalance, limits the classification capabilities to only a

handful of malware families. In contrast, we do not map the rare specimens

into a single class, but rather recognize all 2,898 malware families as individ-

ual classes in our results presented in Section 5.0.2. Furthermore, supervised

methods used in prior work often poorly generalize to rare specimens as also

pointed out by Loi et al [121]. Loi et al. reports that their false positives are

heavily represented by the families collected within the ”others” class due to

the supervised method’s inability to learn the patterns of these families from

a rare number of specimens. We use a semi-supervised approach, which has

an added benefit of improved generalizability and ability to work with a low

quantity of labeled data compared to the supervised models. In other words,

our methods HNMFk Classifier and MalwareDNA do not require training

with rare specimens, since it possesses the abstaining prediction ability i.e.

the reject-option). This allows our method to combine the abilities of mal-

ware family classification under class imbalance and novel malware family

identification where we make an increased number of abstaining predictions
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(lower coverage-rate) to maintain the performance or accurate decisions.

A number of these prior works did consider benign-ware as a class in their

analysis [121, 127, 172], but we assume the samples are already known to be

malware and perform only malware family classification in experiments with

HNMFk Classifier in Section 5.0.2. We did include benign specimens in our

experiments showcasing preliminary results of MalwareDNA in Section 6.0.5

and our ultimate analysis for MalwareDNA in Section 6.0.5. We summarize

the highlights of the mentioned prior work and show how they compare to

our research in Table 3.1.

While several other works have examined supervised approaches [8, 89,

94, 100, 121, 127, 160, 172, 183], we draw inspiration from previous advance-

ments and successes in ensemble learning and clustering methodologies. Our

framework leverages ensemble learning for RFoT and clustering techniques in

multidimensional analysis through tensor decomposition for HNMFk Classi-

fier and MalwareDNA. This approach combines the potency of tensor decom-

position with clustering, and with ensemble learning for RFoT. Furthermore,

driven by the anticipated advantages, we structure our tensor decomposition-

based solutions within a semi-supervised methodology.
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3.0.2 Dimensionality Reduction for Malware Analysis

Figure 3.1: Hourly authentication events from multiple source computers
over 90 days for one compromised user, User087542, in the LANL Unified
Host and Network Dataset [167]. The user’s activity reveals time- and device-
based predictable patterns that deviate from the single anomalous log-on.

Data relevant to cybersecurity problems often exhibit a multi-dimensional

nature, making tensors an ideal tool for analyzing cyber data. Several prior

works have employed tensor decomposition to address cybersecurity issues

in an unsupervised manner. The CPD has emerged as a popular tool for

identifying various types of outliers or anomalies in cyber data [113, 125].

Bruns et al. utilized non-negative tensor decompositions, particularly the

CP-APR algorithm, to detect patterns of malicious network activity [37]. In

this work, the authors leveraged the interpretability of tensor decomposi-

tion results by visually analyzing the latent factors to successfully identify

distinct stages of a cyber breach, including reconnaissance, brute-forcing,

data exfiltration, and insider threats. Another work integrated CP-APR
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with a statistical framework which demonstrated e↵ectiveness in enhancing

automatic anomaly detection capabilities. This method produced state-of-

the-art results in identifying compromised user credentials, botnet network

tra�c, spam emails, power grid and Supervisory Control and Data Acqui-

sition (SCADA) system anomalies, and fraudulent credit card transactions

[58, 72, 129]. Moreover, CP-APR was employed to detect cyber anoma-

lies by utilizing HPC resources for conducting embarrassingly parallel graph

analytics within the latent components [79]. In [72], botnet network traf-

fic from the UGR’16 dataset [122]1 was identified using non-negative tensor

decomposition within a statistical framework based on user behavior anal-

ysis. Users and devices in a network create predictable patterns in time,

see for example Figure 3.1, which can be modeled with tensor decomposi-

tion. Here, the patterns of normal or expected network tra�c were modeled

with CP-APR. During testing, this model, utilizing latent components ex-

tracted by factorizing the data from expected behavior, identified deviations

from the norm via Poisson p-values, where lower p-values were used as an

indicator of an anomaly or botnet network tra�c. The analysis incorpo-

rated IP addresses of the network communication and temporal information

1The UGR’16 dataset is available at https://nesg.ugr.es/nesg-ugr16/
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as tensor dimensions. The study showcased how the unsupervised tensor

decomposition-based method surpasses the anomaly detection capabilities of

several state-of-the-art supervised and semi-supervised approaches.

The Tucker tensor decomposition has also emerged as a popular algorithm

in addressing cybersecurity issues. Kanehara et al. utilized non-negative

Tucker tensor decomposition with thresholding across latent factors to en-

able real-time botnet detection within the darknet [105]. Similarly, Tork et

al. employed Tucker tensor decomposition on a three-dimensional tensor to

identify telecommunication anomalies [81].

Xie et al. introduced a tensor truncating algorithm for rapid low-rank

Tucker decomposition of tensors. They utilized reconstruction error as a

metric for detecting network anomalies [176]. Additionally, Sun et al. tackled

the network anomaly detection problem by employing a dynamic Tucker

tensor decomposition approach tailored for handling large-scale streaming

data [161].

For novel malware detection, the work by Cordonsky et al. [45] bears

the closest resemblance to ours. In their study, they employ two deep neural

network models. Initially, the first model is trained as a multi-class classifier

for fourteen malware families. Then, the softmax output layer, or the pre-
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diction head, of this trained deep neural network is removed, and the last

hidden layer is repurposed for ”dimensionality reduction” to represent the

signatures of malware specimens. They hypothesize that this layer will pro-

duce lower activation levels for malware families it has not previously seen.

Both the known and unknown malware families are then processed through

this network, utilizing the last hidden layer to represent their signatures.

A second, smaller neural network is trained on these signatures from both

known and unknown or novel malware families, aiming for the detection of

novel malware in a binary classification framework. However, based on our

best understanding of this work, their experimental setup appears to include

unknown families in the training phase, specifically for the smaller second

model. A more realistic experimental configuration would exclude these un-

known families from the training phase. In contrast, our experiments with

the HNMFk Classifier and MalwareDNA ensure that the model remains un-

aware of novel malware family data during training. Additionally, Cordon-

sky et al. demonstrate the performance of their methods over a balanced

dataset. However, in real-world where these models are deployed, they are

exposed to unbalanced data where both rare and prominent malware is seen.

Our experiments, conversely, engage with unbalanced data, demonstrating
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how the HNMFk Classifier remains e↵ective under extreme class imbalance,

and with MalwareDNA we highlight the limitations of baseline supervised

and semi-supervised models in classifying rare malware families due to in-

su�cient training data. MalwareDNA achieves accurate predictions for both

rare and prominent families. Lastly, while Cordonsky et al. limit their results

to fourteen malware families, our implementation of the HNMFk Classifier

extends to classifying over 2,800 malware families.

In classical ML, ensemble learning has proven to significantly enhance

individual model capabilities. Motivated by this, there has been growing

exploration of ensemble learning in the tensor domain. Kisil et al. were

among the first to apply an ensemble learning approach in multi-dimensional

space [109]. They utilized an ensemble of latent factors extracted via tensor

decomposition to train classical ML models, combining hypotheses from each

tensor decomposition and ML model.

Similarly, Hou et al. introduced a framework employing tensor decompo-

sition in an ensemble setting to classify Android malware [93]. This involved

utilizing application permissions, API calls, and hardware specifications as

features to construct a tensor. Tensor Filter was then employed in a recur-

sive boosting approach to generate an ensemble of base models. Their study
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demonstrated that the ensemble approach, coupled with tensor decomposi-

tion, enhances malware detection capabilities compared to classical ensemble

models.

Another prior work also utilized an ensemble approach to demonstrate

how anomaly detection capabilities can be enhanced, showcasing that an

ensemble of tensors with varying ranks can augment anomaly detection ca-

pabilities using statistical p-value fusion techniques [72].

The outcomes derived from the aforementioned prior studies heavily de-

pend on the selection of tensor rank, dimensions, and entries. Crafting an

appropriate tensor that yields favorable results upon decomposition presents

a non-trivial challenge due to various factors. Firstly, determining the rank

of a tensor is known to be NP-hard [111]. Additionally, while constructing a

tensor that carries intuitive significance might be feasible, choosing the most

suitable features for tensor dimensions and entries often demands thorough

investigation. This process typically involves trial and error, experimenting

with di↵erent feature combinations.

For instance, several previous studies utilized source IP, destination IP,

and temporal information as tensor dimensions for network tra�c data (Net-

flow). However, Netflow data encompasses numerous other potential features
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like bytes transferred, packet counts, source and destination port numbers,

and connection durations, among others. Simultaneously, the choice of tensor

entry could involve binary values, counts, or other Netflow features. Thus,

the process of selecting the optimal feature combinations to define a tensor’s

dimensions and entries from a multitude of possibilities poses an exponential

scale problem. With RFoT, we propose that employing an ensemble of ran-

domized tensor configurations eliminates the necessity of identifying a single

tensor with optimal dimensions and entry. Di↵erently, with HNMFk Classi-

fier and MalwareDNA, we make use of NMFk to heuristically estimate the

rank, or the number of latent factors, of the tensor while the other features

can be easily incorporated for analysis by unfolding the tensor among the

first mode. Here the number of latent factors corresponds to the number of

clusters. Heuristically estimating the ideal number of latent factors enable

us to find the number of clusters that yield the accurate separation of the

samples, and in return, finding clean signatures.

NMF has also been applied to the malware/benign-ware classification

problem. Ling et al. derive similarity scores of structural patterns extracted

with NMF to detect metamorphic malware (malware with the capability to

modify its code during run-time) using static analysis features [118]. In their
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experiments, they choose a fixed number of components for NMF where the

number of components k is selected as k(n + m) < nm. A single applica-

tion of NMF misses the patterns hidden in malware sub-groups, and using

a fixed number of components can result in missing important information

(under-fitting) or including noise (over-fitting) in the results. Unlike Ling et

al., we perform malware family classification by applying hierarchical NMF

to discover the sub-groups and utilize NMFk as a heuristic to determine the

number of components or clusters for HNMFk Classifier and MalwareDNA.

Prior work outside the malware analysis field has demonstrated that hier-

archical NMF can be used to achieve good clustering of the data [85, 166].

Gillis et al. show that using rank-two factorization at each step (i.e. split

the data into two at each stage, k = 2) yields good clustering results when

applied with hierarchical NMF [85]. We use hierarchical rank-two NMF in

our ablation studies in Section 5.0.2, and show that estimating the num-

ber of components via NMFk produces better classification results, although

extracting two clusters at each factorization does yield good classification

results that surpass our baseline models. We attribute this performance gain

to the advantage of using hierarchical approach that enable us to discover

finer grained patterns hidden in the data.
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The most analogous work to ours, concerning semi-supervised learning,

was conducted by Irofti et al., who proposed a semi-supervised solution using

Dictionary Learning (DL) for classifying Windows PE malware [96]. Their

framework initially trains a dictionary in a supervised manner, facilitating

the intermittent classification of new malware instances, subsequently updat-

ing the dictionary with signals from new malware in an unsupervised online

fashion. However, DL is based on matrix factorization where the careful se-

lection of number of latent features, or rank, is important to develop the best

model as described in Section 2.0.5, which is not considered within this work

while we utilize NMF with automatic model determination to carefully select

the rank of the factorization. Specifically, we use NMFk for HNMFk Classi-

fier and MalwareDNA. The careful selection of rank based on the heuristic in

NMFk allow us to extract clean clusters which allow us to achieve improved

downstream classification performance as compared to our baselines.
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Chapter 4

Random Forest of Tensors

Tensor decomposition is as a powerful unsupervised machine learning

technique capable of modeling multi-dimensional data, including that related

to malware. This section discusses a method that employs tensor decom-

position for malware analysis, or classification of malware and benign-ware.

We introduce an innovative ensemble semi-supervised classification algorithm

named Random Forest of Tensors (RFoT). RFoT leverages tensor decompo-

sition to extract intricate latent patterns from the data. Our hybrid model

combines multidimensional analysis with clustering to capture sample group-

ings within latent components, aiding in distinguishing between malware and

benign-ware. The patterns extracted from malware data using tensor decom-

84



position heavily rely on the configuration of the tensor, including dimension,

entry, and rank selection. To encompass diverse perspectives o↵ered by dif-

ferent tensor configurations, we adopt the ’wisdom of crowds’ philosophy.

This involves leveraging decisions made by the majority within a randomly

generated ensemble of tensors, varying in dimensions, entries, and ranks. We

illustrate RFoT’s e↵ectiveness in classifying Windows Portable Executable

(PE) malware and benign-ware. To promote the utility of tensor decompo-

sition for malware analysis and ensure the reproducibility of our results, we

have made our code publicly available1.

RFoT represents the first semi-supervised framework developed to address

the challenges associated with large-scale malware analysis. This method

demonstrates that tensor decomposition, within a hybrid framework com-

bining clustering and ensemble learning, can e↵ectively classify malware.

Additionally, RFoT incorporates abstaining predictions, which help main-

tain its performance despite a reduced quantity of labeled data. We will now

detail the RFoT methodology.

1RFoT is available at https://github.com/MaksimEkin/RFoT
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4.0.1 Clustering Specimens Over the Latent Compo-

nents

We find that malware and benign-ware samples can be separated in an

unsupervised manner using tensor decomposition. This section begins by

describing the necessary tensor configuration essential for extracting sample

groupings from a tensor decomposition. Moreover, we present concrete in-

stances of clusters representing groupings of malware and benign-ware within

the latent factors. We then summarize the clustering methods used in RFoT

to capture the patterns formed in the latent factors.

Malware Patterns in the Latent Factors

Figure 4.1: Clean malware and benign-ware clusters found by tensor decom-
position

In order to extract latent factors with the capability of describing malware

and benign-ware patterns based on each sample individually, we set our first
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Figure 4.2: Clean malware clusters and noisy benign-ware clusters found by
tensor decomposition

dimension of the tensor XXX to represent each malware sample while selecting

the remaining of the D � 1 dimensions and the tensor entry from static-

malware-analysis based features using the PE header. We give a detailed

description of how the remaining D�1 is configured to build the tensor from

PE features in Section 4.0.2. In this tensor configuration, the shape of XXX is

N1 ⇥ N2 ⇥ · · · ⇥ ND, where N1 is the total number of malware and benign-

ware files from our dataset. For example, to access the tensor entry of the

first specimen from the dataset, for features that are indexing at i2, · · · , iD,

we would index the tensor as XXX0,i2,··· ,iD . Because the first dimension of XXX

represents the samples, the obtained latent factor matrix for mode-1 isMMM::0 =

A(1) 2 IRN1 xR, where R is the tensor rank and A(1) carries latent information

regarding the samples in our data. Using A(1), we can access each individual

latent factorA(1)
:r 2 IRN1 x 1 in which theN1 malware and benign-ware samples

would form clusters. In Figure 4.1, we provide an example latent factor A(1)
:r
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obtained by factorizing N1 = 10, 000 malware and benign-ware from the

EMBER-2018 dataset using CP-ALS. Here, we can see that CP-ALS was

able to cleanly separate malware and benign-ware instances within the latent

factor. We also provide a second example with more noisy clusters in Figure

4.2. In Figure 4.2, around 7 lines forming clusters can be seen. Although

the lines that have the majority of the samples from the malware class form

cleaner clusters, there are other clusters where benign and malware samples

are included within the same cluster. In Section 4.0.3, we will describe how we

handle the more noisy clusters, or the clusters with poor uniformity where

the majority of the cluster is not represented by a single class, using the

Cluster Uniformity Score.

Figure 4.3: Tensor decomposition placing benign samples into a single latent
factor

In addition to observing clusters that separate malware and benign-ware

within each latent factorA(1)
:r , we also find that malware and benign instances

cluster among components in A(1), such that a single component r represents
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Figure 4.4: Tensor decomposition placing malware specimens into a single
latent factor

samples from a single class. For instance, in Figure 4.3 we again show a latent

factor obtained by factorizing N1 = 10, 000 malware and benign-ware from

the EMBER-2018 dataset using CP-ALS. This time, it can be seen that

CP-ALS was able to cluster benign instances within a single factor from the

component r. Similarly, in Figure 4.4, it can be seen that the latent factor r

only contains malware specimens. Motivated by the fact that we can acquire

meaningful patterns that distinguish malware and benign-ware using tensor

decomposition, we next look at how these patterns can be captured to enable

building a semi-supervised classifier.

Capturing the Latent Patterns via Clustering

The performance of RFoT depends on the success in capturing the pat-

terns found by tensor decomposition into clusters. Therefore, in this section

we compare two di↵erent clustering methods. The first clustering algorithm
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we use to capture the patterns is called Mean Shift (MS) [84, 101, 175].

Specifically, we use the Scikit-learn implementation of this algorithm [139].

MS uses centroids to be the mean of clusters and updates the location of the

clusters in a hill-climbing fashion to locate the maxima of a given density

function, making it a good fit to perform clustering in a 1-dimensional space

[139]. The window length, or the furthest point from the centroid of a clus-

ter, is selected via the bandwidth. We use Scikit-learn’s estimate bandwidth2

API to automatically determine the number of clusters. RFoT applies MS

to each component within the latent factor for the first dimension A(1)
:r from

a given tensor decomposition. We extract a total of Gr clusters from each

latent factor A(1)
:r , adding up to total of G = G0+G1+ · · ·+GR�1 clusters for

a single tensor decomposition. We let the gj,r represent a cluster with a set

of samples from the rth component and jth cluster, where 0  j  Gr � 1.

In addition to the MS clustering, we use Component clustering. The mo-

tivation behind the Component clustering comes from our observation that

we can obtain class-based groupings among components, rather than within

individual latent factor, obtained from tensor decomposition. We discussed

this in Section 4.0.1, where figures 4.3 (component with only benign sam-

2We heuristically set the quantile hyper-parameter to be 0.1 for estimating the band-
width.
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ples) and 4.4 (component with only malware specimens) showed an example

of clean clustering within a single latent factor from the component r. For-

mally, when using the Component clustering, we will let each A(1)
:r to define

a single cluster such that gr,r = A(1)
:r . The total number of clusters from the

component r in this case is Gr = 1, and the total number of clusters for the

decomposition is G = R, where R is the tensor rank. Recall that figures 4.1

and 4.2 showed example latent factors where we had mix of both malware

and benign-ware clusters. We will also use the Cluster Uniformity Score,

introduced below at Section 4.0.3, to filter out the cases where we have more

than one class describing a single latent factor.

After each tensor decomposition, we apply pre-processing to each latent

factor A(1)
:r to keep the samples with signals, or samples with a value that

is not near 0 within the latent factor. To this end, prior to applying MS or

Component clustering, we mask out (or remove) the points that are close to

zero, where the distance to 0 is controlled with the hyper-parameter zero tol

in RFoT. In our experiments, we set zero tol = 1e� 08.
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4.0.2 Ensemble of Random Tensor Configurations

Patterns extracted with tensor decomposition depends on the configu-

ration of the tensor including the selection of the dimensions, tensor entry,

and tensor rank. RFoT uses the ”wisdom of crowds” philosophy by utilizing

the patterns found from an ensemble of tensor configurations with randomly

selected dimensions, entries, and ranks.

Notation for an Ensemble of Tensors

We use the variable n estimators to represent the number of randomly

generated tensor configurations. Let XXX(i) be one of the randomly generated

tensors where i is in range 1  i  n estimators . To describe the random

tensor configuration members of an ensemble, we re-formulate the notations

introduced for tensor decomposition in Section 2.0.2. We begin with re-

writing the CPD formula with sum of rank-1 tensors:

XXX
(i) ⇡

RiX

r=1

�r · a(i,1)
r � a(i,2)

r � · · · � a(i,Di)
r (4.1)

Here we have the rank Ri CPD for the ith random tensor XXX(i) with Di

dimensions, and each a(i,d)
r represents the rth latent factor for dimension d,
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where r is in range 1  r  Ri and d is in range of 1  d  Di. Following

the KRUSKAL format we re-write the low-rank approximation as follows:

XXX
(i) ⇡MMM

(i) ⌘ J� ; A(i,1)
,A(i,2)

, · · · ,A(i,Di)K (4.2)

Here MMM
(i) is the low-rank estimation for the ith random tensor, and

MMM
(i)
::d�1 = A(i,d) is the latent factors matrix for dimension d. Each A(i,d) 2

IRNd xRi is a collection of latent factors as follows:

A(i,d) = [a(i,d)
1 , a(i,d)

2 , . . . , a(i,d)
Ri

] (4.3)

As explained in Section 4.0.1, to capture the sample groupings, RFoT

fixes the first dimension to represent each sample from our dataset. In an

ensemble of random tensor configurations setting, MMM(i)
::0 = A(i,1) 2 IRN1 xRi is

the latent factors matrix for the first dimension representing the N1 malware

and benign instances for the ith random tensor. MS clustering is applied

to each A(i,1)
:r = a(i,1)

r , to capture G
(i)
r number of clusters from component

r, such that the total number of clusters found from ith tensor is G
(i) =

G
(i)
0 + G

(i)
1 + · · · + G

(i)
Ri�1. In an ensemble notation, we will let each cluster

with a set of samples to be denoted with g(i)
j,r, where 0  j  G

(i)
r , for the rth
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component of ith tensor decomposition. With Component clustering, each

cluster is g(i)
r,r = A(i,1)

:r , and the total number of clusters G(i) = Ri for the ith

tensor decomposed to rank Ri.

Random Tensor Configuration Sampling

Our random tensor sampling includes a random selection of the number

of dimensions, the features to represent each dimension, tensor entry, and

random or fixed tensor rank. For each i random tensor, we first randomly

choose the number of dimensions Di with replacement, such that the range

of Di is 3  Di  � � 1, where � is the total number of features from

the original matrix X 2 IRN1 x�. The minimum and maximum number of

dimensions a random tensor configuration can have is controlled using the

RFoT hyper-parameters (min dims, max dims), where dims is short for di-

mensions. Here min dims >= 3 since tensors have at least 3 dimensions,

and max dims <= � since we need one of the features to be the tensor entry.

The first dimension is size N1 representing each malware and benign-ware

sample, and the features representing the remaining Di � 1 dimensions are

randomly selected from � features without replacement. Next, from the re-

maining ��Di features, which represent the feature(s) that are not selected
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to be a tensor dimension, RFoT randomly selects the feature to be used as

the tensor entry with replacement. Finally, rank Ri is selected randomly,

also with replacement, or each random tensor is assigned a user-defined fixed

rank Ri = rank .

Tensor rank determines the number of hidden features, or latent compo-

nents, that the tensor decomposition should extract. If we choose the rank

to be too low, then we may miss vital information (under-fitting), while if

the rank is chosen to be too high, then we might include noise in our solution

(over-fitting) [169]. If we under-fit or over-fit the solution, then the latent

factors might not have meaningful patterns to cluster benign and malware

instances. By randomly selecting the rank, we attempt to avoid the need to

correctly determine the rank of the tensor. Using the philosophy ”wisdom

of crowds”, we hope that an ensemble of tensor decomposition collectively

can reach a consensus in the extracted patterns and allow precise malware

detection. By doing so, we let the ensemble members, random tensors, com-

plement each others’ weaknesses. Specifically, we want to cancel out the

impact of the cases where we obtain poor tensor decomposition results by

deriving a decision based on the majority of the population. This hypothesis

assumes that the cases with impure clusters do not represent the majority of
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the population.

As we sample each random tensor configuration, we do not check if the

same configuration was already used. This check is avoided to ensure that

the random sampling process remains fast as the size of the ensemble grows.

Therefore, the aforementioned four steps for sampling random tensor con-

figurations for building the ensemble of n estimators tensors can result in

repeated tensor configurations, which would need to be discarded after the

sampling. Inspired from the previously introduced technique for fast sam-

pling of zero tensor indices [92], we over-sample the tensor configurations to

lower the probability of the repeated tensor configurations. Therefore, we set

the ensemble size to be n estimators + (n estimators · 0.1) random tensors.

We then perform post-processing to keep the unique tensor configurations

and under-sample the ensemble to be the size of at most n estimators.

Feature to Tensor Dimension Mapping and Tensor Entry

Categorical features can easily be mapped to an index in the tensor di-

mension. For example, take the EMBER-2018 feature has signature, a binary

feature that can be a 0 or 1. If a tensor dimension represents this feature,

the size of that dimension would be 2, where has signature = 0 would map
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Feature
Vector 5 19 42 20 21 3 11 5 18 21 13 2 43

2.9-10.8 10.8-18.6 18.6-26.4 26.4-34.2 34.2-42Bins Ranges 

0 1 2 3 4
5 Bin Indices 

Making the Tensor Dimension 

Figure 4.5: Example of 4 numerical feature values being mapped to 5 bins
to form a tensor dimension.

to index 0, and has signature = 1 would map to index 1. This generalizes to

any categorical feature where the labels can be encoded to retrieve features

to dimension index mapping.

On the other hand, in order to use a numerical feature as a tensor dimen-

sion we need to utilize binning to map the given numerical value to a certain

index in the dimension. RFoT uses the cut API from the Pandas Python

library to bin numerical values [137, 174]. The number of bins, or dimen-

sion size Nd, is determined by the RFoT hyper-parameter bin scale, where

the number of bins is Nd = bin scale · num unique(f). Here num unique(f)

gives the total number of unique elements present in a given feature vector f ,

which is one of � features. We provide an example in Figure 4.5 which shows

how numerical features are mapped to 5 bins to from a tensor dimension.
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We can utilize a real example to further explain how a tensor for mal-

ware data can be built using numerical feature binning and categorical fea-

ture mapping. For example, let ith random tensor XXX
(i) have the dimen-

sions Sample - Number of Strings - Has Signature, and entry Number of

Sections. Sample dimension represents each N1 malware and benign-ware

sample. The dimension Number of Strings represents the number of print-

able strings present in a given malware or benign instance, with size N2 =

bin scale · num unique(f), such that the EMBER-2018 features for the num-

ber of strings will map to an index between 0 and N2 � 1. The categorical

dimension Has Signature identifies if a given specimen has a signature or

not, thus the size of the last dimension is N3 = 2. Finally, the tensor entry

Number of Sections determines the number of sections present in the PE

header of a given file. An entry XXX
(i)
n,s,f in this tensor represents the number

sections that a specimen n 2 [0, 1, · · · , N1 � 1], with number of strings that

bins to an index s 2 [0, 1, · · · , N2 � 1], and with the signature flag f 2 [0, 1]

has.
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4.0.3 Semi-supervised Classification with RFoT

In this section, we describe the utilization of clusters for downstream

classification within an ensemble framework. Additionally, we discuss the

application of information gain to select the most relevant clusters for inclu-

sion in the voting process.

Semi-supervised Voting Using the Clusters

Tensor decomposition extracts latent patterns from multi-dimensional

data in an unsupervised fashion, and we capture these patterns for mal-

ware and benign samples using clustering techniques as described in Section

4.0.1. Using the captured clusters, we formulate a semi-supervised classifier

that utilizes the information found by tensor decomposition. In this section,

we first describe how the semi-supervised voting over the clusters is per-

formed. This include the cases where the model is unable to make a decision

for a given sample, and thus abstaining vote is given. We then introduce the

Cluster Uniformity Score that is used as a threshold to filter out noisy, or

non-uniform clusters.

RFoT takes a dataset X 2 IRn x�, where n is the number of samples and

� is the number of features, and a vector y that represents the labels for
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Figure 4.6: Possible cases of clusters that can be seen.

each n samples such that yn 2 [�1, 0, 1, · · · , C� 1]. Note that �1 is used for

the unknown specimens, and C is the number of classes. In this chapter, we

have C = 2 for malware and benign-ware, such that yn 2 [�1, 0, 1] where 0

labels the benign-ware and 1 labels the malware. When we obtain a cluster,

we use the known samples (samples with labels) as a reference to help us

make a decision against the unknown samples (samples without labels, or

�1) within that cluster. Specifically, the class vote of the given unknown

samples that are in the cluster g(i)
j,r is determined by the majority class of the

known samples that are in the same cluster g(i)
j,r. There are 7 possible cases of

cluster characteristics that we can obtain from the latent components, which
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are shown in Figure 4.6. In Case 1, we may have a cluster containing a

set of unknown specimens and a set of known benign-ware. In this case, we

would vote the unknown specimens as benign files. Similarly, we can vote

the unknown specimens as malware if the majority of the known specimens

are malware in the same cluster, as shown in Case 3. It is also possible to

come across clusters where no unknown specimens are present, as shown in

Case 2, Case 4, and Case 7. If there are no unknown samples in a given

cluster, we disregard the cluster since we do not need to perform any voting.

This semi-supervised setup for classifying unknown specimens via cluster-

ing allows us to perform abstaining predictions (i.e. predict ”I do not know”)

due to not being able to obtain a class vote for a given sample. For instance,

if a cluster consists of only a set of unknown specimens, as shown in Case

5, we cannot take a vote for these samples since we do not have any labeled

instances to inform us regarding the class vote. We also cannot take a vote

for the samples that are masked out due to the lack of signals (samples that

are close to 0 with a certain threshold), as described in Section 4.0.1, since

these instances would not be used in clustering. If a given sample always

falls in a cluster without any known samples, as in Case 5, for each random

tensor XXX(i) and its latent factor for the first dimension A(i,1) obtained by the
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decomposition, then this sample is predicted to be abstaining, or its label is

kept as unknown (�1). Similarly, if a given sample n is consistently masked

out due to being near zero in each A(i,1), then it is predicted to be abstaining.

For the samples that do get class vote(s), we perform max-vote to deter-

mine the final class prediction. That is, if a given specimen n has its majority

of the votes (over 50%) representing one of the C classes, the instance n is

predicted to be that class.

Cluster Uniformity Score

It is possible to encounter a cluster that is not uniform in representing a

single class (cluster have known instances from multiple classes). We have

already shown an example of a latent factor with non-uniform clusters in

Figure 4.2, where noisy clusters occur. In Figure 4.6, Case 6 demonstrates a

cluster where we have a mix of known malware and benign-ware specimens.

In such cases, we cannot obtain an accurate class vote from the cluster. To

filter out these clusters, we use the Cluster Uniformity Score which is calcu-

lated based on the fraction of the most dominant known class in the given

cluster g(i)
j,r. While we first begin using the cluster uniformity score for RFoT,

this scoring technique is also used for HNMFk Classifier and MalwareDNA
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for determining the uniformity of the clusters based on known specimens.

For RFoT, we utilize the same metric, but re-formulate it to match with our

ensemble of tensors notation as follows:

U
g
(i)
j,r =

|max (g(i)
j,r

known
)|

|g(i)
j,r

known
|

(4.4)

Here U
g
(i)
j,r is the cluster uniformity score for jth cluster obtained from

rth component of tensor decomposition of ith tensor, g(i)
j,r. |max(g(i)

j,r

known
)| is

the number of samples that belongs to the most dominant class with known

samples in the cluster g(i)
j,r, while |g(i)

j,r

known
| is the total number of known

samples in the cluster. The clusters where U
g
(i)
j,r is below the specified uni-

formity threshold t are removed from consideration, and thus no class vote

is obtained from these clusters. If a given specimen n continuously falls in

the clusters that are removed due to poor purity, it is also predicted to be

abstaining at the end.

4.0.4 Putting it Together: the RFoT Algorithm

We summarize the RFoT methodology in Figure 4.7, and with pseudo-

code in Algorithm 2. We first randomly sample tensor configurations (1).
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Figure 4.7: RFoT methodology overview

Then each tensor configuration is factorized to obtain the latent components

(2). Within each latent component, we look at the latent factor representing

each malware and benign-ware sample (2). Clustering is applied to capture

the groupings within each of these latent factors (2). We filter out the noisy

clusters using the cluster uniformity score. In the cases where we were able to

acquire clean clusters, we take a class vote in a semi-supervised fashion (2).
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After each tensor is factorized, and class votes are obtained from each latent

factor for the first dimension, we get the final class prediction via max-vote

(3). The specimens are predicted to be abstaining if they did not get any

class vote due to either being part of clusters that were not uniform, not

falling in a cluster that had known samples, or because they were masked

out due to not having a signal.

Algorithm 2: RFoT(X, y, n estimators, bin scale, t, R, min dims, max dims)

1: tensor configs = sample tensors(X, n estimators, R, min dims,

max dims)

2: class votes = []

3: for config in tensor configs do . Start the parallel execution

4: XXX
(i) = build tensor(bin features(X, config), config) . COO format

5: MMM
(i) = decompose(XXX(i), Ri) . CP-ALS or CP-APR

6: A(i,1) = get signals(MMM(i)
::0) . Mask out near zero elements for the

mode-1

7: clusters = cluster latent factor(A(i,1)
:r ) . For each Ri, MS or

Component

8: for g(i)
j,r in clusters do

9: if g(i)
j,r in [Case 4,5,6 or 7] then . See Figure 4.6 for the cases

10: continue . Abstaining votes

11: else

12: class votes.append(vote(g(i)
j,r, y)) . Semi-supervised voting

13: end if

14: end for

15: end for . End the parallel execution

ypred = max vote(class votes, y) . Final class prediction

16: return ypred
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We finally note that our implementation of RFoT computes the decompo-

sition of the ensemble of random tensor configurations in a parallel fashion,

since they are independent of one another. The parallel computation of the

members of ensemble allows us to reduce the total time needed for predic-

tion. Specifically, in Algorithm 2, lines 3 through 15 are executed in parallel

based on the number of jobs that the user wants to run.

Now that we have introduced our methodology, we will next showcase the

experiment results from a case-study where we classified malware and benign

samples from the EMBER-2018 dataset using RFoT.

4.0.5 RFoT: Performance Analysis

In this section, we compare our results to the baseline models and assess

the performance of RFoT alongside the baseline models as the labeled data

percentage decreases.

Hyper-parameter Analysis

Prior to the comparison of our approach to the baseline models, we first

evaluate its behaviour under di↵erent hyper-parameters including Bin Scale,

Cluster Uniformity Threshold, Max and Min Number of Dimensions, Tensor
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Rank, and Number of Estimators. The analysis into the hyper-parameter

settings allow us to learn the best model setting for the dataset that we use,

and also to understand the limitations and capabilities of RFoT. We conduct

the hyper-parameter analysis using the CP-ALS tensor decomposition algo-

rithm, and MS and Component clustering methods. For CP-ALS, we set the

maximum number iteration to be 250 for each experiment.

Bin Scale

Figure 4.8: Abstaining percentage is shown for di↵erent values of the Bin
Scale.

Figure 4.9: F1 score is shown for di↵erent values of the Bin Scale.
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The first hyper-parameter that we investigate is Bin Scale, which deter-

mines the size of the tensor dimensions that represent the features with nu-

merical values, as described in Section 4.0.2. During this analysis, we perform

prediction while changing the bin scale hyper-parameter between 0.1 and 1.0

with the step-size of 0.1. We set the remaining of the hyper-parameters as

follows: min dimensions = 7, max dimensions = 8, cluster purity tol = 1.0,

rank = 2, and n estimators = 1000. Heremin dimensions andmax dimensions

determines the minimum and the maximum number of dimensions any ran-

dom tensor can have respectively. Since this experiment evaluates the bin

scale hyper-parameter which only e↵ects the features with numerical values,

to ensure that each random tensor would have a dimension representing a

feature with a numerical value we set the minimum number of dimensions

to be 7. cluster uniformity tol gives us the threshold to select any given

cluster to be used in voting, as described in Section 4.0.3. Using the hyper-

parameter rank , we set each random tensor to be decomposed with rank-2.

Finally, n estimators determines the number of random tensors to be used.

In Figure 4.8, we can see that as the bin scale is increased, the percent

of abstaining predictions for RFoT with Component clustering drops from

around 80% to 75% while it increases from around 66% to 70% for MS
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clustering. At the same time, Figure 4.9 shows that the F1 score for RFoT

with both MS and Component clustering increases as the bin scale reaches

1.0. When the bin scale is set to 1.0, the size of the dimension representing

the given feature is equal to the number of unique values present in the

given feature vector X:f . The results in this analysis suggest that reducing

the dimension size (or the number of bins) for the given numerical features,

could result in under-fitting, or missing the details that help separate the

malware and benign-ware. In addition, the fact that RFoT with Component

clustering saw both reductions on abstaining prediction while increasing F1

score further supports RFoT being able to make a more precise decision for

the given labels when we use a higher bin scale value.

Notice that RFoT with Component clustering yields better malware-

detection results, but higher abstaining predictions. This could be attributed

to MS clustering being able to extract meaningful clustering results that sep-

arate malware and malware from a single component, while the Component

clustering misses the cases such as the one shown in Figure 4.1. Finally, we

do see a larger performance improvement for the MS clustering, which indi-

cates that the added information with the increased dimension size could be

resulting in cleaner in-component clusters that separate classes.
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Cluster Uniformity Threshold:

Figure 4.10: Abstaining percentage is shown for di↵erent values of the Cluster
Uniformity Threshold.

Figure 4.11: F1 score is shown for di↵erent values of the Cluster Uniformity
Threshold.

We next look at the cluster uniformity threshold, which determines the

threshold to remove the noisy clusters. In this analysis, the uniformity thresh-

old is varied between 0.1 and 1.0 with a step-size of 0.1. The remaining of the

hyper-parameters are kept same as the Bin Scale experiment form Section

4.0.5 except the following: min dimensions = 3 and bin scale = 1.
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The first point to note in the results is that we do not get any abstaining

predictions until after the uniformity threshold of 0.6 as shown in Figure 4.10.

This results in poor performance for both MS and Component-based RFoT

as shown in Figure 4.11 with low F1 scores. It can be seen, however, the F1

score improves rapidly as the cluster uniformity score is increased. The in-

crease in the threshold also increases the abstaining predictions. This occurs

because when we choose a higher cluster purity threshold, the clusters to be

used in voting need to be cleaner such that the known classes in the cluster

should represent mainly a single class. Specifically, it there should only be a

single known class in the cluster when cluster uniformity tol = 1. When we

encounter clusters with known samples from a mix of di↵erent classes, using

the threshold, the clusters are removed from the consideration for voting.

This describes the reason behind the increased abstaining predictions. Since

we begin to use only the cleaner clusters, we do see the increased performance

of the model.

The final point to note in this experiment is that MS-based clustering

does outperform Component-based clustering with lower values of cluster

uniformity threshold. This could indicate that the CP-ALS algorithm is

more capable of finding meaningful in-component clusters separating classes
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rather than among-component clusters where each component individually

separates classes.

Maximum and Minimum Number of Dimensions:

Figure 4.12: Abstaining percentage is shown for di↵erent values of the Max
Dimensions parameter.

Figure 4.13: F1 score is shown for di↵erent values of the Max Dimensions
parameter.

The next hyper-parameters we investigate are the choice of the minimum

and the maximum number of dimensions the random tensors should have

within the ensemble. To test this, we set the maximum number of dimen-

sions between 4 and 8, with a step size of 1. For the minimum number of
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Figure 4.14: Abstaining percentage is shown for di↵erent values of the Min
Dimensions parameter.

Figure 4.15: F1 score is shown for di↵erent values of the Min Dimensions
parameter.

dimensions, we look at between 3 and 7 with a step size of 1. The remaining

hyper-parameters are kept the same as the previous experiment in Section

4.0.5. Figures 4.12 and 4.13 show that we get relatively stable results for in-

creasing maximum number of dimensions. We observe a similar trend for the

Component clustering-based RFoT as the minimum number of dimensions

hyper-parameter is increased, as shown in Figures 4.14 and 4.15. However,

we do see an improvement in malware classification for the MS clustering-
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based RFoT as the minimum number of possible dimensions is increased as

shown in Figure 4.15. At the same time, there is an increase in the abstaining

predictions for RFoT with MS clustering as shown in Figure 4.14. This re-

sult could indicate that CP-ALS begins to extract increased number of latent

factors with noisy patterns; however, the patterns that do give meaningful

result are more uniform.

Tensor Rank:

Figure 4.16: Abstaining percentage is shown for di↵erent values of the Rank
parameter.

Figure 4.17: F1 score is shown for di↵erent values of the Rank parameter.

114



In our random ensemble of tensor configurations model, one of the tensor

settings that can be randomly sampled is the tensor rank. We next look at

the performance of RFoT with increasing fixed rank (where each tensor in

the ensemble is decomposed with the same rank), and also with the randomly

selected rank. The goal of this analysis to determine if the patterns extracted

from an ensemble of tensor decompositions with randomly selected ranks can

reach to a consensus in determining the class of the given samples, while

avoiding the need to correctly determining the rank. This hypothesis also

aligns with the need for the cluster uniformity calculations, where if the

extracted patterns result in noisy clusters due to over-fitting or under-fitting,

then we would want to remove these clusters using the cluster uniformity

threshold.

For the fixed ranks, we test RFoT for MS and Component clustering

where the ranks are ranged between 2 and 20 with the step size of 1. We also

randomly choose the rank in this experiment for comparison to the fixed rank.

The remaining of the hyper-parameters are as follows: min dimensions = 3,

max dimensions = 8, bin scale = 1.0, cluster purity tol = 1.0, and n estimators =

1000.

In Figure 4.16, we can see that as the rank is increased the percent of
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abstaining predictions for both RFoT with Component and MS clustering

drops. This drop is more significant for the MS clustering based RFoT. As

the number of components, or the rank, is increased, RFoT obtains more

opportunities to find clusters to retrieve class votes. Increase in the total

number of clusters, which results in increased number of possible class votes

for the unknown specimens could describe the reason behind the drop in the

number of abstaining predictions. At the same time, the steeper decline in the

number of abstaining predictions for RFoT with MS clustering indicates that

the increasing rank improves the capability of CP-ALS to extract patterns

where in-component groupings separate malware and benign-ware.

As the abstaining predictions drop with the increasing rank, the perfor-

mance of the model slightly drops as shown in the Figure 4.17. We again see

a higher drop, compared to the Component clustering, for the MS clustering

which could be the result in the steep decline in the number of abstaining

predictions. Finally, we see that random selection of rank plays a role to

smooth out the results for both the F1 score and the number of abstaining

predictions.

Number of Estimators (Random Tensors):

The final hyper-parameter that we investigate is the selection of the total
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Figure 4.18: Abstaining percentage is shown for di↵erent values of the Num
Estimators parameter.

Figure 4.19: F1 score is shown for di↵erent values of the Num Estimators
parameter.

number of estimators, or number of random tensor configurations in our

ensemble. We test number of estimators between 100 and 10,000 with the

step size of 100. The remaining of the hyper-parameters are kept as same as

the ones we used in Section 4.0.5, except we use a fixed rank of rank = 2.

We select a low-rank of 2 motivated from the results presented in Section

4.0.5. Although we might under-fit the data, cluster purity score allows us to
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separate out the noisy results and only keep the meaningful patterns, which

enables achieving a better malware prediction accuracy.

We observe that as the number of estimators increases, the number of

abstaining predictions drops as shown in Figure 4.18. The increased number

of estimators also increases the number of clusters obtained from each tensor

decomposition where we can potentially obtain class votes. The dropping

number of abstaining predictions with the increasing number of estimators

could be due to the increase in the votes. With the dropping number of ab-

staining predictions, we also see a decline in F1 score as shown in Figure 4.19.

However, for both the F1 score and the number of abstaining predictions,

we see that the decline begins to flatten. Therefore, although the increased

number of votes results in a drop in performance, as we begin to obtain more

votes from a larger ensemble, the model begins to make better decisions and

slow down the performance decline. The performance of our model converg-

ing to a plateau shows that RFoT is capable of using the decision made from

a majority of random tensors to obtain accurate predictions when the size of

our ensemble is large enough. Di↵erently, when the ensemble is small, RFoT

is more certain (accurate) for the predictions made, but a smaller number of

samples are predicted due to the high abstaining prediction percentage.
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Baseline Comparisons

Model Method F1 Precision Recall Abstaining (%) Time (sec)
RFoT (Component, CP-ALS) Semi-supervised 0.968 (+-0.005) 0.968 (+-0.005) 0.968 (+-0.006) 75.703 (+- 0.863) 536.151 (+- 5.132)
RFoT (MS, CP-ALS) Semi-supervised 0.913 (+-0.005) 0.915 (+-0.004) 0.913 (+-0.005) 58.158 (+- 0.399) 554.831 (+- 5.263)
RFoT (Component, CP-APR) Semi-supervised 0.940 (+-0.016) 0.941 (+-0.016) 0.940 (+-0.016) 93.220 (+- 1.534) 880.700 (+- 21.192)
RFoT (MS, CP-APR) Semi-supervised 0.793 (+-0.008) 0.805 (+-0.007) 0.797 (+-0.008) 54.218 (+- 1.646) 1582.156 (+- 20.056)
LightGBM Supervised 0.871 (+-0.005) 0.871 (+-0.005) 0.871 (+-0.005) NA 78.595 (+- 6.040)
XGBoost Supervised 0.873 (+-0.005) 0.874 (+-0.005) 0.873 (+-0.006) NA 93.805 (+- 2.752)
XGBoost+SelfTrain Semi-supervised 0.872 (+-0.006) 0.873 (+-0.006) 0.873 (+-0.006) NA 87.410 (+- 6.813)

Table 4.1: Baseline comparisons

We compare RFoT with CP-ALS and CP-APR decomposition, using MS

and Component clustering, against baseline models XGBoost, LightGBM,

and XGBoost+SelfTrain. For CP-APR we use 16 parallel jobs to decompose

each random tensor using GPUs, while for CP-ALS is decomposed with 50

parallel jobs on CPUs. We tune the baseline models using a popular Python

package Optuna [9]. XGBoost and LightGBM tuned with 3-fold stratified

cross-validation and 50 trials to identify the optimal hyper-parameters. The

tuning settings, or search space for the optimal hyper-parameters, listed be-

low are the same from our experiments with HNMFk Classifier and Mal-

wareDNA for semi-supervised malware family classification [59].

For LightGBM, we used 250 maximum number of iterations, gbdt boosting

type, and objective function binary logloss. The following hyper-parameters

were tuned (ranges are shown in parenthesis): min data in leaf (5-100 in log

scale), max depth (2-7), bagging freq (0-5), bagging fraction (.5-1.0), learn-
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ing rate (.001-.1 in log scale), and feature fraction (.1-.7).

As for XGBoost, we set the maximum boosting rounds to 250 and use

the binary-hinge objective function. The following hyper-parameters were

tuned, with ranges again shown in parentheses: max depth (2-10), eta (.003-

0.5 in log scale), subsample (.2-.7), rounds (10-300), colsample bytree (.3-

1.0), colsample bylevel (.5-1.0), and lambda (.1-2.0). We use the same tuned

hyper-parameters for XGBoost for the XGBoost+SelfTrain baseline model.

In Table 4.1, we compare RFoT with baseline models based on F1 score,

Precision, Recall, and computation time in seconds. Additionally, we display

the percentage of abstaining predictions for RFoT. From the table, it’s ev-

ident that each RFoT model outperforms every other baseline model. The

RFoT model employing Component clustering and CP-ALS tensor decom-

position achieves the highest F1 score of 0.968. However, this model also

generates a significantly high abstaining prediction rate of 75.70%. Thus, an

ideal model choice emerges with RFoT utilizing MS clustering and CP-ALS

tensor decomposition, boasting a commendable F1 score of 0.91 and a lower

abstaining prediction rate of 58%.

CP-APR with component clustering also demonstrates high performance

with an F1 score of 0.94. However, it registers the highest abstaining predic-
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tion rate at 93.22%. In contrast, RFoT with CP-APR decomposition and MS

clustering yields the lowest F1 score of 0.79. Among the models compared,

the fastest performer is LightGBM clocking in at 78.59 seconds.

These results underscore that RFoT is an ideal model for precise mal-

ware detection, although it might predict a lower number of samples due to

abstaining predictions. Notably, as a semi-supervised solution, RFoT sur-

passes supervised models, potentially o↵ering better generalizability to novel

malware.

Labeled Malware Data Scarcity Experiment

Figure 4.20: Abstaining percentage is shown for di↵erent values of the un-
known fraction.

Compared to other ML fields, obtaining labeled malware data is time-

consuming and expensive [148]. This issue is particularly problematic be-
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Figure 4.21: F1 score is shown for di↵erent values of the unknown fraction.

cause popular supervised ML solutions for malware detection often require

a large quantity of labeled data to achieve good performance. Additionally,

Ra↵ et al. emphasize that semi-supervised solutions in the realm of Win-

dows malware classification have not received su�cient attention, despite

their potential benefits such as improved generalizability to novel malware

and achieving higher performance even with a limited quantity of labeled

data [148].

Therefore, we conducted tests on the performance of our semi-supervised

solution with a decreasing quantity of labeled data. We then compared its

performance with that of the supervised and semi-supervised baseline models.

We range the fraction of unknown specimens between 0.02 and 0.98 with
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the step size of 0.02. The fraction of unknown samples ✓ means that the

proportion of the known samples would be 1�✓. For the supervised baseline

models, the fraction of the unknown samples ✓ is equivalent to the size of the

test set, while the fraction of the known samples determines the training set

size. The baseline models are also tuned in this experiment.

In Figure 4.20, the percentage of abstaining predictions for RFoT with

CP-ALS and CP-APR, along with MS and Component clustering, is illus-

trated. CP-APR with Component clustering exhibits the highest number

of abstaining predictions, while CP-APR with MS clustering shows the low-

est. Meanwhile, Figure 4.21 indicates that CP-APR with MS clustering

demonstrates the lowest performance. This suggests that CP-APR strug-

gles to identify meaningful patterns that di↵erentiate the classes within each

latent factor. However, CP-APR with Component clustering achieves high-

performance results, albeit with a trade-o↵ of a high number of abstaining

predictions.

CP-ALS with MS and Component clustering presents a lower percentage

of abstaining predictions along with higher F1 scores. As the fraction of un-

known specimens increases, the percentage of abstaining predictions initially

remains stable and then rapidly decreases, particularly after an unknown
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fraction of approximately 0.7, as depicted in Figure 4.20. This decline could

be attributed to the cluster uniformity score’s inability to filter out noisy

clusters, as they are now represented by unknown specimens from the same

class. Consequently, the other known specimens, which initially revealed the

poor uniformity, are lost as the unknown fraction increases.

In Figure 4.20, it is noticeable that our baseline models generally demon-

strate similar performance trends as the fraction of unknown specimens in-

creases. However, there’s a significant performance drop observed for XG-

Boost+SleftTrain after an unknown fraction of 0.74.

RFoT with CP-ALS and MS clustering, along with CP-APR with Com-

ponent clustering, outperforms each baseline model until XGBoost and Light-

GBM start to surpass RFoT with CP-ALS and MS clustering after the un-

known fraction reaches 0.86. Similarly, XGBoost and LightGBM outperform

RFoT with CP-APR and Component clustering after an unknown fraction

of 0.94.

Considering that abstaining predictions contribute to maintaining model

performance, it is noteworthy that RFoT based on CP-ALS with Component

clustering consistently outperforms each of the baseline models, irrespective

of the fraction of unknown specimens.
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We demonstrated the performance of RFoT and compared it to the tuned

baseline models that prior studies have used to report state-of-the-art mal-

ware detection results. Our findings showed that RFoT, as a semi-supervised

solution, exhibits superior capabilities in detecting malware compared to the

baseline models, including the supervised and semi-supervised algorithms

with a trade-o↵ in lower coverage rate. Furthermore, our experiments high-

lighted that RFoT can achieve higher accuracy in detecting malware even as

the percentage of known samples decreases.
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Chapter 5

HNMFk Classifier

The HNMFk Classifier is the second framework we have developed to

address the shortcomings of large-scale malware analysis. While the RFoT,

a tensor decomposition-based semi-supervised framework, showed promising

results for malware classification, it lacked the capability to detect novel

malware families and to perform e↵ectively under class-imbalance conditions.

With the HNMFk Classifier, we build on our experience from RFoT and

address these critical issues by enhancing our model’s ability to identify novel

malware and operate under class imbalance. Further, while with RFoT we

focused on malware detection, with HNMFk Classifier we adress a di↵erent

problem of malware family classification.
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The experiments conducted with the HNMFk Classifier follow the most

realistic setup for our analysis and have set a world record [134]. This ad-

vanced framework not only improves upon the foundational aspects intro-

duced by RFoT but also extends its applicability and e�cacy in dynamic

real-world scenarios.

5.0.1 HNMFk Classifier Algorithm

X::1
Feature 1
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Feature 2 Feature 3

Begin with 
Mode 1  

Unfolding

Wopt

Hopt

Cluster  
malware families

cluster quality >
threshold?

Subset in X corresponding to
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predict the unknown 
based on the known 
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2

3
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Figure 5.1: Overview of the HNMFk Classifier framework. NMFk is wrapped
around an hierarchical (or recursive) semi-supervised architecture. Begin
with the initial data X (1). Use NMFk to estimate the number of clusters
and obtain the latent factorW (2). Extract the clusters via argmax along the
second axis of W (3). For each cluster, perform abstaining prediction if no
known samples are present in the cluster, or predict the unknown specimens
in a semi-supervised manner if the cluster uniformity score is satisfied (4).
Form the new matrices X with the specimens from the clusters that does
not meet the cluster uniformity threshold (5). For each new X, apply NMFk
again (2).

127



In this section, we describe how our NMFk based hierarchical bulk classi-

fier, named HNMFk Classifier, works. HNMFk Classifier implements some of

the ideas of MalwareDNA, without the real-time classification capability of

MalwareDNA. Specifically, HNMFk Classifier directly works on the extracted

clusters rather than utilizing a signature archive M, which we introduce later

in the dissertation. HNMFk Classifier performs bulk classification where the

known samples are used as a reference against the unknown specimens when

performing hierarchical clustering, resulting in a model with only an infer-

ence process (i.e. no training). Therefore, in comparison to the traditional

ML models which have separate training (slow) and prediction (fast) steps,

this solution can be used outside the real-time environments, such as early

stages in the labeling process of the malware. Our model recursively analyzes

the known and unknown specimens, factorizing only the subset of data from

the previous cluster at each iteration.

The hyper-parameters of our model are the hyper-parameters needed for

NMFk, and the cluster uniformity threshold t. The user specifies the maxi-

mum number of iterations for NMF, number of perturbations, the error rate,

and the range to search for the k heuristic. When performing classification,

HNMFk Classifier is provided with the data matrixX 2 Rn⇥m
+ , where n is the
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number of malware samples and m is the number of features, which includes

both the known and unknown specimens that we want to perform inference

on. We also provide a vector y containing the labels for each specimen. The

ith sample, where 1 � i � n, has the family label yi 2 {�1, 1, 2, . . . , C} for a

dataset with C classes. Notice that the unknown specimens are labeled with

�1.

Our algorithm proceeds with the first factorization, given X, y, the spec-

ified NMFk hyper-parameters, and cluster uniformity threshold t as input.

After NMFk identifies the number of clusters kopt, we obtain the latent fac-

tors W 2 Rn⇥kopt
+ and H 2 Rkopt⇥m

+ . HNMFk Classifier uses W latent factor

to perform clustering, which we call W-clustering. Here each n sample is as-

signed to one of kopt clusters by taking the maximum value along the second

axis:

cluster(i) = argmax
0jkopt

(Wij) (5.1)

where cluster(i) returns the cluster assignment of a given sample i. If a

cluster c, where c 2 {1, 2, . . . , kopt}, does not contain any known samples,

all the unknown specimens in the cluster c are predicted abstaining. If a

cluster c only has known specimens, we do not proceed with the samples in

that cluster further, as there are no more unknown specimens to label. On
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the other hand, if a cluster c has a mix of known and unknown samples,

we calculate the uniformity of the cluster based on the known specimens.

Following the ideas of RFoT, our cluster uniformity score is defined by the

fraction of the most dominant class present in the cluster c:

U
c =

|max (cknown)|
|cknown| (5.2)

where U
c is the cluster uniformity score for the cluster c, |cknown| is the

number of known samples in the cluster, and the numerator is the number

of samples that belongs to the most dominant known class in c. U c specifies

how uniform the given cluster c is based on the labeled data.

If the cluster uniformity score U
c is more than the threshold t, then

we proceed to assign unknown specimens family labels in a semi-supervised

fashion. That is, all the unknown samples are predicted to be the most

dominant class in the cluster based on the known specimens (max (cknown)).

If, however, the cluster uniformity score is less than the threshold t for a

given cluster c, we form a new X
0 2 R|c|⇥m

+ that only contains the malware

specimens present in that cluster (both known and unknown). Finally, X
0
is

factorized again with NMFk. In the proceeding NMFk, k search range se-
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lected to be [1, kopt] with the step-size of 1. The above procedure is repeated

until all the unknown samples are classified. In this setting, our leaf nodes

in the hierarchical graph are the positions where at least one of the following

exit conditions are met: no known specimens in the cluster (abstaining pre-

diction), no unknown specimens are in the cluster (nothing to classify), or

U
c � t is true and we classify all samples in the cluster in a semi-supervised

manner. The aforementioned procedure is summarized in Algorithm 3 and

Figure 5.1.

In summary, looking at Figure 5.1 we can conclude that HNMFk Clas-

sifier is a wrapper to the NMFk algorithm, which exploits NMFk’s ability

to estimate the number of latent components, and performs factorization

recursively to create a hierarchical graph where the semi-supervised classifi-

cation is done at each leaf node. When our model finishes classification, any

unknown samples that are left with the label �1 are said to be abstaining

predictions, i.e. the model does not know their classes or rejects to make a

prediction.

We also provide a toy example illustrating how HNMFk Classifier works

in Figure 5.2. In this figure, we have a matrix X 2 IR9 x 3 (9 malware sam-

ples with 3 features). After factorizing X with NMFk, we get the latent
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factors W 2 R9⇥kopt
+ and H 2 Rkopt⇥3

+ , with the estimated number of clusters

k
opt = 4. Samples 5 and 6 are assigned to cluster 2. Sample 6, an unknown

sample, is classified as family a. Cluster 3 contains only 2 unknown samples.

Therefore, we classify samples 2 and 7 as abstaining. Cluster 1 contains the

sample 1 (family a), 3 (family b), and 8 (unknown). Because this cluster

has samples belonging to two di↵erent families (assuming that our cluster

uniformity threshold is t = 1, i.e. threshold is met only when all the known

samples in the cluster belongs to a single class), we create a new subset with

these samples, such that X
0 2 R3⇥3

+ . We apply NMFk again on X
0
, which

estimates kopt = 2, and sample 8 is classified as family b. When all samples

are predicted, the computation is complete.

In our experiments, when testing HNMFk Classifier, we first use a small

subset of the dataset (in a setup that does not reflect the real world) to

understand the e↵ects of using di↵erent hyper-parameters in our model, con-

duct ablation studies, and to observe the performance of our model with

a decreasing quantity of labeled data. During our (more realistic) larger

scale experiments, we use 2,898 classes of malware families (numbering more

than 388,000 samples) with extreme class imbalance, and while including

novel unknown malware samples during classification. Our method surpasses
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Figure 5.2: A toy demonstration of how HNMFk Classifier operates in a hi-
erarchical fashion, and how the semi-supervised classification of the unknown
malware specimens is performed via the clustering on the latent W matrices
using the known samples.

the supervised baseline models XGBoost and LightGBM [41, 107]. We fur-

ther extend these baselines with the SelfTrain algorithm to create strong

semi-supervised models, which our approach still outperforms [179]. We also

achieve better classification results compared to our Multi-Layer Perceptron

(MLP) baseline [90]. To the best of our knowledge, we are the first to per-

form malware family classification over the EMBER-2018 corpus under re-

alistic conditions such as the inclusion of the rare and novel families during

our experiments, and our target number of family classes is around 29 times
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more than the previous work with the largest number of classes [94]

5.0.2 HNMFk Classifier: Performance Analysis

Figure 5.3: HNMFk Classifier’s performance for abstaining prediction, exe-
cution time, and the maximum depth is shown as the cluster uniformity and
the unknown malware fraction changes.

In this section we look at the performance of our method for di↵erent

cluster uniformity thresholds, unknown malware fractions, and NMFk hyper-

parameter selections. Similar to prior work, we use a small subset of the

dataset (an unrealistic data setup), during our analysis in this section. Each

experiment is run 10 times on di↵erent random subsets of the dataset, to

verify if the results are statistically significant using hypothesis testing. To
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this end, we report our results with a 95% confidence interval (CI) for each

experiment.

Cluster Uniformity Threshold

Figure 5.4: The performance of HNMFk Classifier is measured with the
F1 score as the cluster uniformity threshold is changed. Each experiment
is performed on 10 di↵erent random subset of the EMBER-2018 dataset,
average is plotted with the 95% confidence interval.

We use a threshold value t, which measures how many labeled (known)

specimens are needed to claim that all unknown specimens in this cluster

are uniform, that is, from the same labeled malware family. This threshold

allows us to determine whether to proceed further with clustering of the

current data in the node with additional applications of NMFk. The left side

of Figure 5.3 shows the percent of abstaining predictions, execution time,

and the maximum graph depth (maximum number of edges between the

root and a leaf node) as the cluster uniformity threshold t is changed. As t
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increases, the percent of abstaining predictions rises, since the solution needs

increasingly cleaner clusters. This reduces the number of specimens that we

can classify with high certainty, and results in a higher number of abstaining

predictions. The maximum graph depth also increases, alongside the higher

execution time, since achieving cleaner clusters requires an increased number

of separations. We show how the F1 score changes for each malware family in

Figure 5.4. As the cluster threshold increases, the performance of the model

improves for each malware family, and the results become more certain, as

indicated by the narrowing confidence interval. Although the computation

time increases, a higher threshold yields better inference results. Therefore,

during the experiments we set the threshold to be t = 1.

Labeled Malware Data Scarcity Experiment

The process of labeling malware is expensive [148]; therefore, semi-supervised

learning can help with obtaining good performance results when using a low

quantity of labeled data. We investigate this by looking at how our model

performs as the unknown malware fraction increases. Figure 5.5 displays the

average F1 score for each malware family as the unknown malware fraction

rises. Since our model can perform abstaining predictions, as the unknown
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Figure 5.5: The performance of the HNMFk Classifer, measured with F1
score, remains relatively stable for each malware family as the unknown mal-
ware fraction increases (or the number of known samples decreases). Each
experiment is run on 10 random subset of the dataset.

malware fraction increases, the performance of the model remains relatively

stable. A lesser number of known malware samples means that our model to

have a lesser number of references that can be used to classify the unknown

samples. This results in higher number of abstaining predictions which in

return helps with maintaining the performance (this can be seen at the right

top of Figure 5.3). In Figure 5.5, we can also see that two malware families,

Sality and Ramnit, yield lower F1 scores in comparison to the other families.

Possible reasons for diminished performance on Sality and Ramnit include

the fact that they are both “file infectors” (a category of malware which

copies its code into other executables). It may be more di�cult to classify

this type of malware using the selected features, since some of the original

PE metadata/file contents may not be changed when a file is infected.
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Figure 5.6: Average F1 score when classifying 10 malware families is com-
pared to other baseline models as the fraction of unknown malware increases.
Each experiment is run on 10 random subset of the dataset.

We also show a confusion matrix in Figure 5.6, that showcases the accu-

racy of our method for each malware family. This figure displays the model

accuracy for each malware family at a traditional know or training set size

of 80% where the testing is performed at the remaining 20% of the samples.

It can also be seen that the same two families, ramnit and sality, each return
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lower accuracy scores.

Figure 5.7: Average F1 score when classifying 10 malware families is com-
pared to other baseline models as the fraction of unknown malware increases.
Each experiment is run on 10 random subset of the dataset.

The average F1 scores obtained by the HNMFk Classifier with the chang-

ing unknown specimen fraction are also compared to the vanilla baseline

models in Figure 5.7. Here, the unknown malware fraction point where the

HNMFk Classifier begins to outperform a baseline model is shown with a ver-

tical line. We use the supervised baseline models XGBoost and LightGBM,

and a semi-supervised model LightGBM+SelfTrain. These traditional ML

models do not have the ability to perform abstaining predictions. Therefore,

they rely on an abundance of labeled data to perform well during testing. The

HNMFk Classifier surpasses the average F1 score of LightGBM+SelfTrain at

0.64 unknown malware fraction. XGBoost is outperformed at unknown mal-

139



ware fraction 0.94, and LightGBM at 0.97. We also note that these models

continue to perform relatively well as the known malware fraction drops be-

cause we are using a small and balanced subset of the dataset which contains

the most populous malware families, making the problem easier. We will be

further analyzing the performance of the baseline models and our approach

with a realistic dataset setup. The experiments under real-world like setup

will reveal that the performance di↵erence between the baseline models and

our method is even greater.

Hyper-parameter Analysis

In addition to the cluster uniformity threshold hyper-parameter of the

HNMFk Classifier, we also provide our model with the hyper-parameters of

NMFk. In Figures 5.8-a and 5.8-b we show that changes in the number of

perturbations and NMF iterations do not have a large e↵ect on the perfor-

mance of our method. Figure 5.8-c displays the change in F1 score as the

maximum k is increased for the k search of first NMFk. In this experiment,

we choose the k step-size of 1, and begin searching at k = 1. The perfor-

mance of the model continues to increase as the predicted k is approached.

After the estimated k
opt is reached, the F1 score does not change, since we
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(a) (b)

(c)

Figure 5.8: (a) Change in performance is measured using F1 score as the
number of NMFk perturbations increased. It can be seen the e↵ect to the
overall performance as this hyper-parameter is changed is low, with average
average F1 score of .92 and confidence interval .001. The di↵erence between
the highest and lowest point is .032. (b) Change in performance is measured
using F1 score as the number of NMFk iterations increased. It can be seen
the e↵ect to the overall performance as this hyper-parameter is changed is
low, with average average F1 score of .91 and confidence interval .0008. The
di↵erence between the highest and lowest point is .031. (c) Change in perfor-
mance is measured using F1 score as the maximum k for of NMFk k search
is increased. Here, k range is 1 through the maximum k value, with the step
size of 1. It can be seen as the maximum k increases, the performance of the
model improves. After the estimated k, increasing the value further does not
change the performance.
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will always choose the same kopt in the first NMFk. These experiments indi-

cate that we need to choose the initial k search range to be large enough to

obtain a good initial clustering.

Realistic Malware Family Classification

Now that we have gained understanding into how our method performs

with di↵erent hyper-parameters and settings, we will next use the more real-

istic data setup to show how our approach fares far better under real-world

constraints. When ML-based malware defense and analysis solutions are

used outside the research environment, they often encounter extreme class

imbalance. At the same time, analysts do not have access to all possible

malware samples, and threat actors continuously develop new pieces of mal-

ware. Therefore, ML-based systems are exposed to malware that has never

been seen before. To this end, we analyze the performance of our method

under a real-world like setting by exposing our model to prominent, rare, and

novel malware families. In this section, we utilize all the malware families

present in the EMBER-2018 dataset to conduct our experiment. The perfor-

mance of HNMFk Classifier is compared to the supervised baseline models

LightGBM, XGBoost, and MLP. We also create strong semi-supervised ver-
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sions of LightGBM and XGBoost by wrapping them with SelfTrain. During

the hyper-parameter tuning of LightGBM and XGBoost, we use the Python

package Optuna to get the hyper-parameter suggestions for each trial [9],

and for the construction of an optimal neural net-based classifier, MLP, we

employed a HyperBand Tuner as an accelerated tuning algorithm [117]. The

hyper-parameters of LightGBM was tuned using a stratified 20% subset of

the training set over 65 trials and 3-fold stratified cross-validation. We used

a stratified subset of the dataset because using the entire dataset for this

model resulted in each trial taking approximately 2 days during tuning (it

would have taken approximately 100 days to complete 50 trials for tuning).

We used the objective multiclass with a 500 maximum number of iterations,

and gbdt boosting type. The following hyper-parameters were tuned (ranges

are shown in parenthesis): min data in leaf (5-100 in log scale), max depth

(2-7), bagging freq (0-5), bagging fraction (.5-1.0), learning rate (.001-.1 in

log scale), and feature fraction (.1-.7). For LightGBM, we have also tried the

recommended hyper-parameters from the EMBER-2018 dataset [15], which

did not yield better results when compared to our best trained model.

XGBoost was tuned using the entire dataset over 25 trials with stratified

3 fold cross-validation. We used maximum boosting rounds of 500 with the
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multi-class softmax objective function. The following hyper-parameters were

tuned: max depth (2-10), eta (.003-0.5 in log scale), subsample (.2-.7), rounds

(10-300), colsample bytree (.3-1.0), colsample bylevel (.5-1.0), and lambda (.1-

2.0).

The HyperBand framework has been widely used in the deep learning

community for estimating the optimal parameters in a short amount of time.

HyperBand is a variation of random search with explore-exploit theory to

estimate best configurations within a given allocated time. The hyper-

parameters utilized for model selection of theMLP were the number of depths

of the neural network (1-10), number of nodes on each layer (1024-16000),

optimization algorithm (SGD, Adam, RmsProp), and the learning rate (1e-

4, 1e-1). We employed early stopping criteria on validation loss to avoid

over-fitting.

Since our method’s performance does not change dramatically with the

change in hyper-parameters, we choose the hyper-parameters without tuning

with 20 perturbations, 500 number of iterations, and k-range to be 1 through

100 with the step-size of 1 for the first iteration. We did verify, by inspecting

the plot of the initial NMFk (similar to the Figure 2.5), that the estimated

number of components was less than 100. If it had been close to 100, we
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would have re-started our experiment with a higher range. Finally, we chose

the cluster uniformity threshold t to be 1, i.e. each cluster should have a

single known class to be able to perform semi-supervised classification.

Table 5.1 compares our method to the baseline models. The HNMFk

Classifier, a semi-supervised solution, outperforms all of the state-of-the-art

models, which we used as baselines, with an F1 score of 0.80. Our approach

outperforms the supervised methods, with the potential benefit of better

generalizability and the need for less labeled data, due to the semi-supervised

setting. We also surpass the strong semi-supervised version of XGBoost with

SelfTrain. Notice that these baseline models were used to report benchmarks

by prior studies. However, our experiment reveals the performance of these

models under realistic conditions.
.

Model F1 Precision Recall Tune Time Train&Predict Time
HNMFk Classifier (semi-supervised) 0.80 0.85 0.77 5.77 days 7.91 days
HNMF2 Classifier (semi-supervised, ablation study) 0.77 0.82 0.74 5.77 days 2.83 days
XGBoost+SelfTrain (semi-supervised) 0.76 0.78 0.73 2.06 days 4.72 hours
XGBoost (supervised) 0.74 0.77 0.72 2.06 days 2.93 hours
LightGBM (supervised, tuned on stratified subset) 0.65 0.74 0.64 11.09 days 3.02 hours
MLP (supervised) 0.72 0.76 0.71 1.02 days 30 minutes
LightGBM+SelfTrain (semi-supervised) 0.64 0.69 0.61 11.09 days 9.44 hours

Table 5.1: HNMFk Classifier is compared against the state-of-the-art super-
vised classifiers. HNMFk Classifier, a semi-supervised method, surpasses the
previous state-of-the-art models, which are supervised, in malware family
classification. Weighted F1, Precision, and Recall scores are provided for
multi-class classification with imbalanced data. The F1 scores of HNMFk
Classifier and HNMF2 Classifier does not include the abstaining predictions
(score includes the specimens where the prediction was not rejected)
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Additionally, our method utilizes abstaining predictions (rejection to make

a prediction), which other baseline models do not perform. We provide the

metrics for the abstaining predictions in Table 5.2. The models that do not

perform abstaining predictions always predict the novel specimens incorrectly

since these samples belongs to a new class. The proposed ability to predict

novel samples as ”other” may still require the model to have seen the given

specimen in the ”other” class, which is not as e↵ective as rejecting to make

a prediction, which incorporates uncertainty in the model. In addition, as

pointed out by Loi et al. [121], predicting specimens as ”other” class often

results in false predictions due to supervised models’ common inability to

learn patterns from a small number of samples. Our method’s novel abil-

ity to reject making a prediction yields promising results in identification of

novel malware. Interestingly, around 22% of the malware which we saw in

the known set were also predicted as abstaining by the HNMFk Classifier.

This 22% we referred as false-abstaining, since the specimens here belongs to

classes that we had labels for. Importantly, around 42% of the novel malware

(i.e. the malware which we did not see in the known set), are classified as

abstaining. This 42% is referred as true-abstaining since our model did not

have a reference label for these specimens in the known set. We also note that
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both true and false abstaining predictions would be caused by signatures or

patterns extracted by NMFk being distinct from the labeled samples. Hence,

it is possible that a detailed investigation and utilization of latent signatures

can help to reveal characteristics that di↵er given specimen from the known

samples (similar to the prior work in latent mutational cancer signatures

[14]) and result in improvement of the abstaining predictions. This hypoth-

esis motivated the development of MalwareDNA, which we will introduce as

the next method in this dissertation.

In Table 5.2, for completeness, we also provide F1 scores for each baseline

that is calculated only of the specimens that HNMFk Classifier did make

a predictions (i.e. it did not abstain). Notice that the F1 scores of our

baselines increase, even surpass our model in some cases, when the rejection

to make predictions is not included in the score calculations. This result

points out that the abstained samples are hard to correctly classify since our

baselines yield lower scores when they are included (see the scored reported

in Table 5.1). While the baselines falsely predicted the families for the harder

specimens, HNMFk Classifier rejected to make a prediction and managed to

maintain higher performance.

We also apply our ablation study, where the number of cluster selection
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Model Abstaining Seen (%) Abstaining Novel (%) F1 - (Non-reject)
HNMFk Classifier (semi-supervised) 22.06 42.70 0.80
HNMF2 Classifier (semi-supervised, ablation study) 16.96 34.16 0.77
XGBoost+SelfTrain (semi-supervised) NA NA 0.81
XGBoost (supervised) NA NA 0.80
LightGBM (supervised, tuned on stratified subset) NA NA 0.74
MLP (supervised) NA NA 0.79
LightGBM+SelfTrain (semi-supervised) NA NA 0.70

Table 5.2: HNMFk Classifier is compared against the state-of-the-art su-
pervised classifiers. The ability of the HNMFk to discover novel families is
shown. F1 - (Non-reject) column shows the F1 scores for the specimens
that HNMFk Classifier did make a prediction on. Not applicable (NA) used
at the cells where the case does not apply to the given model. Abstaining
Seen refers to false-abstaining predictions, samples that belong to known
classes that were seen in the training set. Di↵erently, Abstaining Novel
shows the true-abstaining predictions, where the specimen belongs to a class
that were not seen before.

heuristic is turned o↵ and rank-two factorization is used (i.e. k = 2 at each

node). In table 5.1, we can see that the HNMF2 Classifier does perform bet-

ter than our baseline models. However, the HNMFk Classifier outperforms

this method, which points out that carefully choosing the number of clus-

ters improves the separability and the overall performance during prediction.

HNMF2 Classifier also reduces the percent of abstaining predictions, includ-

ing the reduced percent of abstaining predictions on novel malware. We show

additional results for ablation study on the automatic model selection below

at Section 5.0.2.

Finally, note that in Table 5.1 we have also included the tuning time com-

parison between the HNMFk Classifier and the baseline models. The 5.77
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days of tuning time listed for HNMFk Classifier comes from our performance

analysis on selecting the cluster uniformity threshold t and understanding the

e↵ects of di↵erent hyper-parameter values of NMFk. We selected t = 1 for

higher performance based on what we learned from the results of our exper-

iments discussed in Section 5.0.2, and showed that the hyper-parameters of

NMFk has a minimal a↵ect on the model’s performance. Note that the k

selection procedure of HNMFk Classifier, which comes from the NMFk al-

gorithm, is not a hyper-parameter adjustment, but a model selection, which

is integrated in the algorithm [97]; therefore, it is not included in the tuning

time. Instead, it is reported as the model training time. Our method takes

about 8 days to complete running, which is significantly longer than our base-

line models. In comparison to the traditional ML methods (in our case, the

baseline models used in the experiments), our method is not a fast predictor.

Instead, HNMFk Classifier is a bulk-classification method. The aforemen-

tioned 8 days computation time is the total inference time for the HNMFk

Classifier. Therefore, our model is not suitable for real-time solutions, that

is, for analysing of a single specimen at the time it comes in the system. Our

method rather can be used for an accurate malware classification early in

the labeling process. This is another motivation behind the development of
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MalwareDNA, which is a real-time solution.

Ablation Studies

In our ablation studies we investigate the benefit of performing bulk clas-

sification and carefully choosing the number of clusters. To this end, during

the first study we change the bulk classifier structure of our approach to

form a more classical model, which we call the HNMFk Classical Classifier.

During the second study, we ablate the automatic model selection heuristic

from our method. The small subset of the EMBER-2018 dataset, is also

used in our ablation studies in this section. As mentioned above, we use the

top 10 malware families in the dataset with 1,000 specimens, each randomly

sampled. Each experiment is run 10 times using a di↵erent random subset

each time.

Bulk Classification:

To show that there is a benefit to doing bulk classification for our method-

ology, we compare the performance of the HNMFk Classifier to the HNMFk

Classical Classifier, a model that does not perform bulk classification. This

model also uses the known samples to form the hierarchical graph. We then

predict the unknown samples separately over the hierarchical graph by fol-
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lowing the edges, and computing similarity scores at nodes. For each of the

n unknown malware samples, we obtain the cluster assignment by compar-

ing the features Xi: (ith sample) to the rows of the latent factor H using

cosine-similarity score:

cluster(i) = argmax
0jkopt

(1� cosine-distance(Hji,Xi:)) (5.3)

We follow each sub-clusters, comparing the features vector for the ith sample

to H at each step, until we reach a leaf where we predict the label of the

specimen i in a semi-supervised fashion. In Figure 5.9 we compare the F1

scores obtained from our ablation studies to HNMFk Classifier as the fraction

of unknown samples change. From the figure, it can be seen that performing

classification with HNMFk Classical Classifier yields unstable results, and

our method HNMFk Classifier outperforms this model. This shows that

bulk classification is beneficial in obtaining stable and accurate inference

results.

Determination of the Number of Clusters:

The HNMFk Classifier utilizes the estimated number of components pre-

dicted by the NMFk algorithm to achieve good separability of malware fam-

151



Figure 5.9: The performance of the HNMFk Classifier is compared to the
other variants of our method from the ablations studies, as the fraction of
the unknown malware is changed.

ilies. For the next ablation study, we look at the benefit of estimating k, or

the number of clusters. During this study, we form another classifier named

the HNMF2 Classifier, based on the previous work of Gillis et al. [85], which

chooses k = 2 at each node, i.e. separate the data into two clusters at each

step, until each known sample falls in separate leaf nodes.

In Figure 5.9, we also provide the results for the HNMF2 Classifier.

Choosing k = 2 at each step performs almost as well as our approach. As also

argued in [85], this result points out the benefit of hierarchical setting. Even

if we make a bad separation of the samples due to rank-two factorization, the

hierarchical approach will fix the separations in the proceeding splits. How-

ever, although slightly, our model outperforms the HNMF2 Classifier, which

shows that choosing the number of components carefully using a heuristic is

beneficial.
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Figure 5.10: Percent of abstaining predictions for HNMFk Classifier and
HNMF2 Classifier is compared as the unknown malware fraction in our
dataset is increased.

Finally, Figures 5.10 and 5.11 illustrate the percentage of abstaining pre-

dictions and the total execution time, respectively, comparing the HNMFk

Classifier and the HNMF2 Classifier as the fraction of unknown malware

samples in our dataset increases. It is evident that for both models, the

percentage of abstaining classifications increases with the rise in the fraction

of unknown malware samples in our training or known set. Compared to

the HNMF2 Classifier, the HNMFk Classifier yields a higher percentage of

abstaining predictions, which results in more accurate decisions.

Similarly, Figure 5.11 shows that the HNMF2 Classifier operates faster

than the HNMFk Classifier. This is expected since factorizing a matrix at

each node when k = 2 is much quicker than searching for the optimal k value
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Figure 5.11: Execution time for HNMFk Classifier and HNMF2 Classifier is
compared as the unknown malware fraction in our dataset is increased.

through automatic model determination in HNMFk Classifier. Additionally,

we observe a decline in total execution time as the unknown malware fraction

in the training or known set increases, which can be attributed to the reduced

data size requiring analysis.
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Algorithm 3: HNMFk Classifier(X, y, kmin, kmax, r, t) - Semi-supervised
Hierarchical Classifier
1: known samples= argwhere(y != -1)
2: unknown samples = argwhere(y == -1)
3: W, H, kopt = NMFk(X, kmin, kmax, r)
4: clusters = argmax(W, axis=1)
5: for cluster in clusters do . iterate over kopt clusters
6: known samples c = intersect(known samples, cluster)
7: unknown samples c = intersect(unknown samples, cluster)
8: if len(known samples c) == 0 then . no unknown samples to make

prediction
9: continue

10: end if
11: if len(unknown samples c) == 0 then . abstaining prediction
12: continue
13: end if
14: class counts = count(known samples c)
15: cluster uniformity = max(class counts) / sum(class counts)
16: if cluster uniformity ¡ t then
17: X new = X[cluster] . subset in X, samples in the cluster
18: y new = y[cluster] . labels for the samples in the cluster
19: k

max = min(kopt+1, min(X.shape))
20: y[cluster] = HNMFk Classifier(X new, y new, kmin, kmax, r, t)
21: else
22: classify label = max(class counts) . dominant known class in the

cluster
23: y[unknown samples c] = classify label
24: end if
25: end for
26: return y
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Chapter 6

MalwareDNA

MalwareDNA represents the pinnacle of our malware analysis capabilities,

building upon the foundations set by both RFoT and the HNMFk Classifier.

Developed from our experiences with both RFoT and HNMFk Classifier,

MalwareDNA transitions from bulk classification to real-time classification

capabilities. While the HNMFk Classifier demonstrated promising results

in detecting novel malware, MalwareDNA achieves even greater accuracy

and precision in identifying new malware families. Furthermore, while our

experiments with the HNMFk Classifier were limited to malware families,

with MalwareDNA, we have expanded the scope to include benign speci-

mens. This approach not only aims at classifying malware families but also
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requires the model to distinguish benign samples from malicious ones simul-

taneously. This dual capability enhances the robustness and applicability of

MalwareDNA in real-world scenarios.

Moreover, MalwareDNA incorporates new confidence metrics that signifi-

cantly enhance its ability to detect novel malware and operate robustly under

conditions of class imbalance. This model not only advances the technical so-

phistication of its predecessors but also refines their functionalities to perform

more e↵ectively in dynamic and challenging environments. Additionally, its

capability for real-time classification makes MalwareDNA particularly well-

suited for operational cyber-defense systems.

6.0.1 Building of Latent Signature Archive

An overview of how the signature archive is built is shown in Figure 6.1.

MalwareDNA first applies NMF to the observational data X (Figure 6.1,

S1). Recall that NMF is an unsupervised learning method based on a low-

rank matrix decomposition [36]. For completeness and flow, we give a brief

summary of NMF in this section as well. NMF approximately represents an

observed non-negative matrix, X 2 Rn⇥m
+ , as a product of two (unknown)

non-negative matrices, W 2 Rn⇥k
+ whose k columns are the latent signatures
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Figure 6.1: Overview of how the archive of latent signatures is built from
multi-dimensional data in a hierarchical manner. The patterns from the
data are first extracted (S1). These patterns have the corresponding clusters
among the samples (e.g. malware specimens, S2). If we identify a cluster
where each sample belongs to the same class (uniform), we place the patterns
(or latent signatures) corresponding to this cluster into the archive (S3).
Otherwise, we separate the mixed signatures of samples belonging to a non-
uniform cluster by successive factorization (going back to S1).

each with n features, and H 2 Rk⇥m
+ whose rows are the activities of each

one of the k signatures (latent features) in each m samples, where usually

k ⌧ m,n. This approximation is performed via non-convex minimization

with a given distance, ||...||dist, constrained by the non-negativity of W and

H: min||Xij �
Pk

s=1 WisHsj||dist.

The NMF minimization requires prior knowledge of the latent dimen-
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sionality k for accurate data modeling, which is usually unavailable [162].

Excessively small values of k lead to poor approximation of observables in X

(under-fitting), while excessively large values of k fit the data’s noise (over-

fitting). In this work, we use NMFk that incorporates automatic model se-

lection for estimating k [10, 171]. NMFk integrates NMF-minimization with

custom clustering and Silhouette statistics, and combines the accuracy of the

minimization and robustness/stability of the NMF solutions. A bootstrap

procedure (i.e., generation of a random ensemble of perturbed matrices) is

applied to estimate the number of latent features k. Recently, NMFk was

applied to a large number of big synthetic datasets with a predetermined

number of latent features, and it has demonstrated its superior performance

of correctly determining k in comparison to other heuristics clustering tech-

niques [34, 132]. MalwareDNA uses a publicly available implementation of

NMFk [69]1.

After extracting the accurate factors W and H, we apply a custom H-

clustering method, the Argmax operator, to assign each sample (represented

by the columns of X) to one of the k signature clusters (S2) i.e. the label

assignment for X:,j is given as yj = argmax(H:,j) if max(H:,j) > ⌧ for some

1NMFk is available in https://github.com/lanl/T-ELF.
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Figure 6.2: Illustration of a latent signature archive constructed by Mal-
wareDNA: This archive comprises multiple signatures, each representing the
characteristic patterns of a di↵erent malware family. When a new speci-
men is introduced, these signatures are utilized to characterize the sample
by summarizing the extent to which its patterns match those present in the
archive. This process helps in accurately identifying and classifying the mal-
ware based on its familial traits.

confidence probability/threshold ⌧ . In each of these clusters, some of the

samples may have di↵erent labels (non-uniformity) based on this confidence

probability if max(H:,j) <= ⌧ . We evaluate the uniformity of the samples in

each cluster, determining whether all labels are the same (S3). Here, cluster

uniformity score follows the same ideas of RFoT and HNMFk Classifier.

Recall that the cluster uniformity score was formulated in Section 5.0.1.

When a uniform cluster is identified, we separate the samples of this
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cluster from the data, X, and add the annotated (by the labels) cluster

centroid, corresponding column of W, to our archive of signatures M 2

Rn⇥K
+ , where n is the number of features and K is the number of unique

latent signatures. Otherwise, we continue with successive factorization in

a hierarchical manner to separate the mixed latent signatures as shown in

Figure 6.1. Further, Figure 6.2 depicts an illustration of an archive built by

MalwareDNA.

6.0.2 Inference on the Latent Signature Archive via

Projection

New Sample
Projected SignatureSignature Archive

NNLS

Figure 6.3: Illustration of how a new sample is projected onto the latent
signature archive using Non-Negative Least Squares (NNLS) to obtain the
projected signature.

We use the latent signature archive M, after it is built, for inference - or

classification - tasks. During testing for real-time inference, we project each

new sample x onto the signature archive using Non-negative Least Squares

Solver (NNLS)[35] where the optimization problem is given as argmin
h>=0

kx �
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Mhk22 to extract coe�cient vector h̃. Figure 6.3 gives an illustration of

this procedure. This allows us to perform real-time identification by rep-

resenting each new sample as a combination of signatures recorded in the

archive x ⇡
PK

i=1 h̃i ⇤ Mi =) x̃ = Mh̃ and estimating the accuracy, or

similarity score, of this representation. We utilize the cosine similarity score

of the NNLS projection of the new sample to the signatures m 2 M given

as S(m, x̃) = m.x̃
kmk2kx̃k2 . Techapanurak et al. observed that cosine similar-

ity is e↵ective in identifying out-of-distribution samples [163], and Zhang et

al. demonstrates cosine similarity as an e↵ective metric to define the con-

fidence of methods with reject-option capability [184]. We further define

three di↵erent confidence metrics – Projection Similarity, Ensemble Voting,

and Data Augmentation – using the cosine similarity scores from the NNLS

projections.

6.0.3 Confidence Metrics

We have incorporated three di↵erent confidence metrics into MalwareDNA,

each designed with unique discriminative capabilities. Here, ”discrimina-

tive capability” refers to the model’s e↵ectiveness in accurately identifying

whether a sample is truly novel when utilizing the reject-option. This in-
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volves determining if the sample identified as novel is indeed a new instance.

Additionally, discriminative capability also encompasses the model’s perfor-

mance when it opts not to reject a prediction, focusing on the accuracy of

the predictions made.

Projection Similarity

Projected Signature

Cosine-similarity 

.9 .5 .1
Similarity/Confidence

Scores
Most Similar

Selected

Signature Archive

Figure 6.4: This illustration demonstrates how the projected signature is
used to calculate cosine similarity scores against each signature in the latent
signature archive. These signatures measure the model’s confidence. The
highest score that surpasses the specified threshold is selected for the pre-
diction. If none of the similarity scores exceed this threshold, the sample is
classified as novel, meaning the model would employ the reject option, re-
sponding with ”I do not know.”

We utilize the similarity scores, together with a threshold, ⌧ , to define

the malware family and novel malware family classification. Once we ex-

tract h̃ based on NNLS approach discussed above, the prediction is then
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defined, using cosine similarity score S where yj = argmax
0jK

S(M:,j, h̃). where

the given prediction j is labeled yj 2 {1, 2, . . . , C} for C classes. i.e. the

most similar signature is selected based on distance measurement. When a

signature possesses a similarity score above ⌧ , the labels of the signature will

be determined as the classification result. Di↵erently, when the similarity

score is below ⌧ , the reject-option or abstaining classification will be selected

where the returned label is �1. We provide an illustration of this process in

Figure 6.4.

Ensemble Voting

Ensemble learning can further enhance the accuracy of our confidence cal-

culation [184]. If we define a second threshold ⌧̃ against the cosine similarity

between h̃ and each K signatures in M, we can obtain votes for each class

yM
i 2 {1, 2, . . . , C}. Given a sample x, for each class C we can obtain VC

number of votes if the cosine similarity score between h̃ and columns of M

belonging to class C are above the given threshold ⌧̃ (⌧̃ = 0.5 in our experi-

ments). We normalized the votes based on the number of signatures present

for a given class in yM , such that V̂C = VC/|IC |, where |IC | is essentially

is the number of latent signatures belonging to class C. This procedure for
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Figure 6.5: This illustration explains how ensemble voting is used to deter-
mine model confidence. Given a secondary threshold, ⌧̃ , the model assigns
votes to buckets corresponding to each class if their cosine similarity scores
exceed this threshold. The confidence score for each class is then calculated
as the ratio of the number of votes to the number of samples in that class.
The classification result is the class with the highest confidence score, pro-
vided that this score surpasses the primary threshold ⌧ . If no confidence
score meets this primary threshold, the reject option is employed.

defining confidence with ensemble voting is illustrated in Figure 6.5.

Data Augmentation

We also test our method with data augmentation to define the confidence,

where the idea is confidence stability under perturbation for post-processing
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Figure 6.6: This illustration demonstrates how confidence is established using
test-time data augmentation. When a new sample is received, MalwareDNA
introduces noise through p di↵erent perturbations. Following the Projection
Similarity confidence method described in Section 6.0.2, we calculate the
cosine-similarity scores for each perturbation. The final vector of similarity
scores is then obtained by averaging these p vectors of scores.

during testing time [23, 184], which is done with instance-level perturbations

(test-time data augmentation) [24]. Here we add some error ✏ to x to gen-

erate p di↵erent perturbations (x̃1, x̃2, ...., x̃p) where x̃i = x + ✏|pi=1, that is

centered around x with distance k✏k = 0.015 in our experiments), and av-

erage the corresponding cosine similarities of the predictions S
p
i=1 to define

the confidence. The idea is that a truly confident outcome should remain

stable under noise/perturbations, and that instance-level perturbations may

yield more robust confidence measurements. Figure 6.6 gives an illustration

of how the data augmentation at test level used to define the confidence. We

apply this bootstrap approach 50 times in our experiments.
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6.0.4 HPC, Multi-processing, and GPU Capabilities

MalwareDNA incorporates advanced computing techniques including multi-

processing, high-performance computing (HPC), and graphics processing

unit (GPU) capabilities. The integration of multi-processing and GPU func-

tionalities is achieved through threading in Python, and with utilizing the

CuPy library [136]. Specifically, for threading, we use Python’s native

⇤⇥ ��concurrent.futures library. In parallel, HPC capabilities are facilitated

by the implementation of OpenMPI, which is managed through the mpi4py

library in Python [47, 48, 49, 50]. This section describes the algorithm de-

signs employed to use multi-processing, HPC, and GPU resources.

MalwareDNA employs a hierarchical approach to applying NMFk, as dis-

cussed in Sections 2.0.5 and 2.0.6. As presented in Figure 6.1, MalwareDNA

implements the NMFk operation recursively across hierarchical levels when

building the signature archive, where each application of NMFk targets a

specific subset of the data. This methodology generates a graph structure in

which each node represents an NMFk operation performed on a data sub-

set. Example visualizations of such graphs, using real malware data, were

demonstrated in Figures 2.6 and 2.7. Within this graph, nodes at the same

graph depth operate independently, as each is responsible for processing a
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Figure 6.7: MalwareDNA constructs a hierarchical graph in which each node
executes NMFk operation. The computation of these NMFk operations is
distributed across multiple worker MPI ranks, which correspond to compute
nodes in a HPC system. This distribution is orchestrated by a manager rank,
which is responsible for job coordination and e�cient resource allocation.

distinct subset of samples derived from its parent node. These subsets are

obtained by the clusters found by NMFk. Figure 6.7 provides an additional

visualization that illustrates how these computations are distributed across

multiple HPC ranks, or compute nodes within an HPC system. Note that

here we use the term distributed computation to describe how we make use

of multiple compute nodes in an HPC system to run embarrassingly parallel

tasks. This means, this implementation is not distributed in terms of data,

where chunks of the data is processed across di↵erent HPC compute nodes.
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In Figure 6.7, it is important to note that Rank 0 serves as the manager

node, responsible for job orchestration. Here the term Rank refers to a

compute node in an HPC system. With OpenMPI, a communicator obtained

and it allows communication among di↵erent ranks of a HPC system. The

initial NMFk computation, conducted on the entire dataset, is carried out by

Rank 1 (Node 0) at Depth 0. This initial operation, as illustrated, separates

the malware specimens in our data into three separate clusters. Subsequently,

at Depth 1, Ranks 1, 2, and 3 begin their respective NMFk operations on

each cluster simultaneously. For illustrative purposes, the operation at Node

1, conducted by Rank 1, completes ahead of Nodes 2 and 3, identifying four

distinct clusters. While Nodes 2 and 3 continue processing, Ranks 1, 4, 5, and

6 simultaneously initiate NMFk operations on these newly identified clusters.

By the time Depth 2 is reached in this demonstration, a total of six compute

nodes are actively engaged in performing NMFk operations concurrently.

The manager node here, which is at Rank 0, is responsible of managing the

job queue.

Figure 6.8 illustrates the job management process for distributing the

NMFk computation across multiple HPC nodes. In the first section of the

figure, the manager node is shown dispatching jobs to four worker nodes.
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Figure 6.8: The illustration of job management for distributed MalwareDNA
is shown in this figure. Rank 0, serving as the manager node, is responsible for
orchestrating the job queue. This includes dispatching jobs to worker nodes,
receiving completed jobs from them, processing the results, and ultimately,
if no jobs remain, terminating the worker nodes.

Jobs are sent to specific worker nodes using the
⇤⇥ ��comm.isend command and

are received by the worker nodes from the manager using
⇤⇥ ��comm.irecv in

mpi4py, which initiates the communication request. Here,
⇤⇥ ��comm refers to

an MPI communicator. The compute nodes wait for this communication

request to complete before proceeding. Communication utilizes a bu↵er to

handle the transfer of Python dictionary objects across multiple HPC nodes.

The manager node periodically checks the status of the worker nodes (once

every second, unless busy with another communication). As shown in the

second part of the figure, Ranks 1 and 4 complete their tasks and notify the
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manager node of their status changes, prompting the manager to collect the

results using
⇤⇥ ��comm.irecv . At this point, the completed NMFk operations

may result in the identification of new clusters for hierarchical factorization,

potentially adding more jobs to the queue. However, for the purposes of

this illustration, it is assumed that no new jobs are added. In the final

section of the figure, the manager node sends the last job to Rank 1 and

issues an exit signal to Worker Rank 4. Rank 4 receives the exit signal

through
⌥⌃ ⌅⇧comm.iprobe and subsequently terminates.

⌥⌃ ⌅⇧comm.iprobe is a

non-blocking communication, that is, if the signals status does not exist, the

node does not wait and continue its computation with remaining of the logic.

In this situation, the logic will result in the worker node to come back to exit

check portion of the system, and eventually receive the exit signal.

Note that in this setup, at Node 0, Rank 0 is tasked with performing

NMFk on the entire dataset within a single compute node. While each sub-

graph processes a distinct subset of the data, thereby reducing the volume

analyzed at each subsequent depth, the initial computation at Depth 0 in-

volves handling a large dataset. Consequently, additional HPC capabilities

have been integrated to distribute the NMFk operation across multiple com-

pute nodes. NMFk conducts factorization for various K values, where K
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denotes the matrix or tensor rank (distinct from MPI rank). This rank rep-

resents the number of linearly independent columns and rows, or the optimal

number of latent patterns (clusters). During the initial application of NMFk

on significantly larger datasets, it is advantageous to distribute the computa-

tion across multiple HPC nodes to facilitate the exploration of K values. As

demonstrated in Figure 2.5, we have previously illustrated how NMFk eval-

uates several K values, determining the optimal one by employing heuristics

for stability and accuracy in a bootstrap approach.

Figure 6.9 illustrates the execution of the distributed NMFk operation. In

this version of the HPC algorithm for NMFk, there is no designated manager

node; instead, each node independently performs parts of the NMFk oper-

ation. At Rank 0, or compute node 0, the process begins with a K search

space defined as
⌥⌃ ⌅⇧Ks=[1,2,3,4,5,6,7,8,9] . This configuration mandates

that factorization be executed for each matrix/tensor rank listed, to heuris-

tically identify the optimal number of clusters that yield the best sample

separation. The system broadcasts this search space to each compute node.

Note that the computation times for lower ranks are typically shorter than

those for higher ranks. To enhance e�ciency and resource utilization, ma-

trix/tensor ranks are distributed across nodes in a manner that ensures each
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Broadcast the 
search space to 

each rank 

Node 0
Start at rank 0

Gather results at 
rank 0

rank 0

Process results at 
rank 0

rank 4

K=9

K=4

Multi-processing 
in each rank

GPU

GPU

Figure 6.9: The figure illustrates the distribution of each K value, represent-
ing the matrix or tensor rank, across multiple HPC nodes. Additionally, it
demonstrates how multi-processing within each node enables the concurrent
factorization of di↵erent matrix/tensor ranks on each GPU. This method
not only leverages the computational power of multi-node environments but
also optimizes the utilization of GPU resources to expedite the factorization
process.

node processes both lower and higher ranks. This strategy prevents scenar-

ios such as Rank 0, receiving
⌥⌃ ⌅⇧Ks=[1,2,3] , completing its tasks significantly

earlier than Rank 1, which might receive
⌥⌃ ⌅⇧Ks=[4,5] , thereby causing Rank

0 to idle while waiting for Rank 1 to finish. In our depicted example, Rank

0 is assigned
⌥⌃ ⌅⇧Ks=[1,6] . Once all compute nodes complete their respec-

tive factorization processes, Rank 0 collates the results and analyzes them to

determine the ideal tensor/matrix rank.
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Finally, note that in Figure 6.9 that MPI Rank 4 was assigned two K

values,
⌥⌃ ⌅⇧Ks=[4,9] , for factorization. On each compute node, we employ

multi-processing techniques to concurrently factorize these K values. This

concurrency can be achieved through multiple CPU processes, or by utilizing

threading to engage multiple GPUs within a system. In Figure 6.9, we pro-

vide an illustration of how Rank 4 concurrently utilizes two GPUs to factor-

ize
⌥⌃ ⌅⇧Ks=[4,9] . In summary, our algorithm has been specifically designed to

leverage HPC systems, multi-processing, and GPU capabilities to accelerate

linear algebra operations. This approach e↵ectively streamlines the processes

required to construct an archive of latent signatures with MalwareDNA.

6.0.5 MalwareDNA: Performance Analysis

In this section, we showcase the performance of MalwareDNA across dif-

ferent experimental setups designed to examine the distinct characteristics of

the method. We begin with our initial analysis outcomes and progressively

build the narrative towards more specialized dataset setups for a thorough

examination of the method. While we will point out each dataset settings

as we showcase the results as a short reminder, recall that the summary of

experimental setups can also be found in Section 2.0.8.

174



All experiments involving MalwareDNA, including the ones involving

baselines, were conducted on the LANL’s High HPC system named Chicoma.

Each compute node within Chicoma is equipped with four NVIDIA A100

GPUs, 252 GB of RAM, and an AMD EPYC 7713 64-Core processor. To

construct the signature archives using MalwareDNA, each experiment and

its corresponding cross-validation process utilized four nodes of Chicoma.

For example, for an experiment with MalwareDNA where we run ten cross-

validations (CV), where data was randomly sampled on each CV, we used

total of forty nodes (# nodes = 4 nodes⇤10 CV) to complete the experiment.

This setup allowed for the distribution of NMFk operations in MalwareDNA

across multiple nodes. Additionally, multi-processing was employed to use

all four GPUs on each node, thereby parallelizing the search for the optimal

rank within each node with NMFk. In contrast, the prediction tasks using

the MalwareDNA archive were executed on a single Chicoma node utilizing

a single process. The baseline models were also tuned and trained on a single

node of Chicoma exploiting the GPUs and multi-processing capabilities.
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The First Look at the Performance

In this section, we begin by showcasing the capabilities of MalwareDNA.

The purpose here is to provide a background that will support our investiga-

tion into the results in subsequent sections, which will delve deeper into the

analysis methods.

To illustrate the capabilities of MalwareDNA, we first randomly sample 1k

benign-software and malware specimens from four families (ramnit, adposhel,

emotet, and zusy) using a popular benchmark dataset, EMBER-2018 [15].

We select ramnit to represent a malware novel/unseen family. The results

shown in this section used MalwareDNA’s Projection Similarity method to

define the confidence.

Fig 6. Risk-Coverage (RC) curve when classifying the malware 
families and the benign-software, together with the area 
under the RC score (AURC). Here lower score is better, and the 
RC curve models the trade-off between the coverage and the 
accuracy. 

Figure 6.10: Risk-Coverage (RC) curve when classifying malware families
and the benign-software, together with the area under the RC (AURC).

The performance of our method is first reported with AURC [53] in Figure
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Model F1 Precision Recall Rejection Seen Rejection Novel
MalwareDNA (ours) 0.975 0.975 0.977 15.70 % 100.00 %
XGBoost 0.416 0.699 0.510 NA NA
LightGBM 0.297 0.749 0.338 NA NA
XGBoost+SelfTrain 0.096 0.258 0.108 4.34 % 18.09 %
LightGBM+SelfTrain 0.096 0.078 0.197 2.89 % 17.14 %

Table 6.1: Performance of MalwareDNA compared to baselines. Rejection
Seen provides the false rejection predictions for the samples that belongs
to known classes. Rejection Novel is the true rejection predictions for the
samples that belongs to a novel malware family. XGBoost+SelfTrain and
LightGBM+SelfTrain achieve AURC score of 0.654 and 0.651.

6.10. Recall that AURC models the trade-o↵ between the coverage (the

number of samples for which the non-rejecting predictions were made) and

the risk which is measured with 0/1-loss. AURC score is reported between

0 and 1, and lower AURC is preferred over higher AURC. MalwareDNA

achieve AURC of 0.02 when classifying the three malware families and benign

samples. Our score indicates that we can achieve high coverage with minimal

increase in the risk (false rejection predictions).

At 84.3% coverage, MalwareDNA achieves an F1 score of 0.975 when

classifying the malware families and the benign-software and 100% true-

rejection predictions for the chosen unseen family ramnit, which illustrates

our method’s ability to identify novel malware families (Table 6.1). In Ta-

ble 1, we also baseline our method against the state-of-the-art supervised

malware classifiers XGBoost [42] and LightGBM [108]. We further extend
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these baselines with the SelfTrain [179] algorithm to create semi-supervised

models. We note that the previous work has used these models to report

benchmarking against this dataset [15, 124]; however, we expose these mod-

els to a more challenging task of classifying malware families, separating

them from benign samples, and detecting novel malware families all at the

same time. Our baselines are tuned using Optuna [9] over 100 trials with

5-fold stratified shu✏e cross-validation. Our benchmarking against the base-

line models and the poor performance of these models, points out both the

di�culty of the task, and MalwareDNA’ unique capability to both accurately

detect malware, classify families, while simultaneously detect novel malware

families.

We have expanded these results to include 20,000 samples, randomly se-

lected from the EMBER-2018 dataset with no benign specimens included. As

illustrated in Figure 6.11-b, we achieved a notable AURC score of 0.038. This

indicates that at approximately 50% coverage, the accuracy rate is around

0.99, and 99% of Ramnit samples are correctly identified as novel, as shown

in Figure 6.11-a. During these experiments, we processed a data stream, clas-

sifying an average of 18 specimens per second using a single processing core,

which demonstrates the real-time classification capabilities of MalwareDNA.
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(a)

(b)

Figure 6.11: (a) Accuracy score, and percent of abstaining predictions as
the cosine-similarity threshold is raised is shown for Reject Known (false
rejection), Reject Novel (true rejection), and non-rejected known specimens.
(b) Risk-Coverage (RC) curve when classifying malware families and the
benign-software, together with the area under the RC (AURC).
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Additionally, as depicted in Figure 6.11-a, when the cosine similarity thresh-

old approaches 1, our method accurately identifies almost all novel samples.

However, nearly 80% of known samples are incorrectly identified as novel.

Thus, there is a clear trade-o↵ between the desired coverage and the goal of

identifying novel specimens.

While these initial results highlight the promising capabilities of the

method, we will next explore the distinct characteristics of MalwareDNA.

Additionally, it is important to note that no confidence intervals are reported

in this section. We will include cross-validation results in all subsequent sec-

tions to illustrate the statistical significance of the findings, and report our

results with confidence intervals.

Confidence Methods

In this section, we investigate the performance of our various confidence

methods: Projection Similarity, Ensemble Voting, and Data Augmentation,

which are utilized to define the reject-option. The results presented here

follow the dataset setup for addressing the class imbalance problem as de-

scribed in Section 2.0.8. We ten times randomly sampled from seven malware

families, selecting three to represent the rare families, which are randomly
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(a)

(b)

Figure 6.12: Dataset distribution for the experiments for ”Class Imbalance”
and ”Confidence Methods” is shown. (a) The heatmap displays the average
number of samples in the train and test sets for each malware family. (b) For
each of the 10 experiments, we randomly sample the dataset. This heatmap
illustrates the confidence intervals for the samples in the train/test split for
each malware family.
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down-sampled. Notably, Ramnit is chosen to represent the novel family.

Figure 6.12 illustrates the distribution of training and testing data.

Figure 6.13: Risk-Coverage (RC) curve when classifying malware families
and novel malware together with the area under the RC (AURC) for di↵erent
MalwareDNA confidence metrics and our semi-supervised baselines.

We compare various confidence methods using AURC scores, as shown in

Figure 6.13. Here, risk is quantified as 1 � F1 score. Notably, this compar-

ison includes two semi-supervised baselines. These semi-supervised models

are not designed for reject-option. However, for comparison to our semi-

supervised method, we use the prediction probabilities of the semi-supervised

baseline methods with the same reject-option threshold to define the abstain-

182



ing predictions. That is, when the prediction probability is less than the given

threshold, given specimen is abstained from the prediction.

MalwareDNA with Ensemble Voting achieves the best AURC score of 0.16

when classifying malware families. It is also observed that Ensemble Voting

maintains a lower risk (higher F1 score) as the coverage rate increases (i.e.,

the fraction of abstaining predictions decreases) up to a coverage rate of

approximately 0.65. Additionally, across most coverage rates, MalwareDNA

with each confidence metric consistently yields a lower risk score compared

to our semi-supervised baselines.

Since our baselines are not designed with a reject-option, their risk levels

remain unchanged for about half of the coverage rates. However, their cov-

erage begins to decline after the coverage rate surpasses 0.6, as they start to

generate incorrect predictions.

We next compare the confidence metrics using F1 scores and the percent-

age of abstaining predictions for known and novel samples across di↵erent

confidence thresholds, as illustrated in Figure 6.14. In Figure 6.14-a we ob-

serve that with Data Augmentation, the model’s performance remains stable

until reaching a high confidence threshold, at which point there is a sharp

increase in both the score and the percentage of abstaining predictions. It
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(a)

(b)

(c)

Figure 6.14: F1 scores and percent of abstaining predictions (reject-option)
for di↵erent cosine similarity score thresholds are shown. We include score
for known samples, and the reject-option for known and novel samples. (a)
Data Augmentation (b) Ensemble Voting (c) Projection Similarity
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is also important to note that there is minimal di↵erence in the percent-

age of abstaining predictions between novel and known samples, suggesting

that Data Augmentation may not be the ideal confidence metric for novelty

detection.

Figure 6.14-b illustrates the results for Ensemble Voting. This confi-

dence metric significantly outperforms others in distinguishing between novel

and known samples at much lower confidence thresholds, demonstrating its

robustness in classification accuracy and distinguishing between novel and

known samples. At a confidence threshold of about 0.6, Ensemble Voting

misclassifies approximately 60% of the known samples as novel, indicating a

conservative approach towards classification that prioritizes minimizing false

negatives. While this high rate of false positives for known samples might

seem detrimental, it reflects the method’s stringent criteria for classifying

samples as known, thereby enhancing its ability to detect novel threats ef-

fectively.

Conversely, Ensemble Voting correctly identifies almost all novel samples

as novel, achieving an F1 score of around 0.9. This high F1 score underlines

the method’s ability in recognizing new malware variants, which is critical

for maintaining system security against the most recent or novel threats.
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The ability to accurately identify novel samples while maintaining a high F1

score is indicative of the sophisticated underlying model architecture that

e↵ectively balances sensitivity and specificity. This performance is particu-

larly noteworthy because it demonstrates the potential of Ensemble Voting

to act as a reliable safeguard in operational settings where the cost of miss-

ing a novel threat can be substantial. By setting the confidence threshold at

0.6, the system ensures a rigorous vetting process, substantially reducing the

risk of overlooking new malware types at the expense of more frequent false

alarms.

In Figure 6.14-c, we observe the results for Projection Similarity, which

resembles the results for Data Augmentation but with improved performance

in distinguishing between novel and known samples. This method enhances

its performance even at lower confidence thresholds compared to Data Aug-

mentation.

These results point that Ensemble Voting would be an ideal choice in iden-

tifying novel samples in the cost of lower coverage rate. Furthermore, the

trade-o↵ between coverage and risk at varied confidence levels suggests that

Ensemble Voting can be calibrated to meet specific operational requirements

by adjusting the threshold. For environments where the detection of novel
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threats is prioritized over the increased misclassification of known samples a

higher threshold can be selected. Di↵erently, in settings where false positives

are a critical concern, decreasing the threshold could help mitigate this issue,

in the cost of reduced sensitivity to novel malware. In summary, the Fig-

ure 6.14 highlights the adaptability to di↵erent security needs through the

manipulation of the confidence threshold. Finally, we note that the scores

obtained in this section for MalwareDNA are lower than the performance

presented as initial results in previous section, Section 6.0.5. We believe this

may be caused because of a more challenging experimental setting in this

section while the initial results were done over an ”easier” data, where the

initial results included small number of samples and balanced data.

Class Imbalance

Next, we investigate the performance of MalwareDNA under conditions of

class imbalance. The dataset setup for this investigation follows the structure

outlined in the previous section, where we examined the confidence metrics.

Recall that we detail the distribution of malware families in the training and

testing sets in Table 2.4, and Figure 6.12. In this section, our method is

compared against both supervised and semi-supervised baselines. Given our
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findings from previous section, we will show the results for Ensemble Voting

in this section.

Model F1 Precision Recall
MalwareDNA (Projection Similarity) .966 (+-.008) .973 (+-.007) .960 (+-.005)
MalwareDNA (Ensemble Voting) .995 (+-.002) .993 (+-.002) .996 (+-.002)
MalwareDNA (Data Augmentation) .966 (+-.012) .971 (+-.009) .967 (+-.008)
XGBoost .500 (+-.005) .468 (+-.039) .823 (+-.013)
LightGBM .509 (+-.006) .460 (+-.031) .825 (+-.019)
XGBoost-SelfTrain .499 (+-.007) .466 (+-.034) .819 (+-.015)
LightGBM-SelfTrain .510 (+-.006) .460 (+-.031) .824 (+-.014)

Table 6.2: Performance of MalwareDNA when classifying malware families
compared to baselines.

Model Rejection Seen Rejection Novel
MalwareDNA (Projection Similarity) 67.16% (+- 3.38) 85.84% (+- 0.76)
MalwareDNA (Ensemble Voting) 70.11% (+- 0.40) 95.34% (+- 0.09)
MalwareDNA (Data Augmentation) 69.23% (+- 3.32) 84.67% (+- 2.76)
XGBoost NA NA
LightGBM NA NA
XGBoost-SelfTrain 11.80% (+- 1.48) 27.50% (+- 3.44)
LightGBM-SelfTrain 5.75% (+- 0.88) 13.50% (+- 2.07)

Table 6.3: Novel malware detection of MalwareDNA compared to baselines.
Rejection Seen provides the false rejection predictions for the samples that
belongs to known classes. Rejection Novel is the true rejection predictions
for the samples that belong to a novel malware family.

At around the 30% coverage rate, MalwareDNA with Ensemble Voting

achieves an F1 score of 0.995 when classifying the malware families (Table

6.2), and 95.34% true-rejection predictions for the chosen unseen family ram-

nit, which illustrates our method’s ability to identify novel malware families

(Table 6.3). Note that the relatively high rejection-seen percentage for our
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method, for example 70.11% for Ensemble Voting in Table 6.3, is the result

of the trade-o↵ for giving up coverage, and in return obtaining lower risk

(i.e. higher performance or F1 score) and higher rate of detecting novel mal-

ware families. A user may choose the trade-o↵ between the coverage and

risk, see for example Figure 6.13 for determining the model performance for

di↵erent coverage rates. In Table 6.3 it can also be seen that our baselines,

including the semi-supervised ones, obtain much lower scores. The lower

performance of our baselines are mainly caused by the miss-classified rare-

classes as well as the novel families. For example, as seen in Table 6.3, our

semi-supervised baselines with SelfTrain, while obtaining low rejection-seen

percentage, they are also not able to reject much of the novel malware families

and miss-classify them (XGBoost+SelfTrain only rejects 27.50% of the novel

specimens). We further notice the performance degradation of our baselines

for the class-imbalance problem in Figure 6.15.

Figure 6.15 shows that our baseline models yield lower performance on

each of the rare malware families (emotet, fareit, and zusy), while our method

maintains a higher F1 score. Note that MalwareDNA with Data Augmenta-

tion and Projection Similarity yields lower scores for the rare family emotet,

while Ensemble Voting still manages to maintain its performance. Therefore,
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Figure 6.15: Mean F1 scores with CI is reported for each malware family
when comparing MalwareDNA with di↵erent confidence metrics to both our
supervised and semi-supervised baselines. It can be seen that, while our
baseline’s performance degrade for the rare malware families (emotet, fareit,
and zusy), our method maintains its performance.

we believe that Ensemble Voting is an ideal confidence metric for handling

the class imbalance problem. Our benchmarking against the baseline models

and the poor performance of these models, points out both the di�culty of

the task, and MalwareDNA’s unique ability to both accurately classify fam-

ilies under class imbalance, while simultaneously detecting novel malware

families.

We also demonstrate the performance of our model across each malware

family, evaluated separately at various confidence thresholds for Ensemble

Learning, as depicted in Figure 6.16. In this figure, the y-axis represents the

average F1 score for the families included in the training set. Di↵erently,

for the novel family ramnit, the y-axis indicates the proportion of ramnit
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Figure 6.16: The performance of MalwareDNA, illustrated with confidence
intervals at various confidence thresholds for Ensemble Voting, is presented
separately for each malware family. The average F1 score for known samples
and the fraction of abstaining predictions for Ramnit (novel family), are also
shown. The purple solid line represents the average for all categories.

samples classified as novel using the reject option. The purple solid line rep-

resents the average performance across all families, summarizing the model’s

e↵ectiveness at di↵erent confidence thresholds. A key observation from this

figure is that the overall model performance begins to be optimal after the

confidence threshold of 0.5. It is also notable that our model struggles the

most with the malware family xtrat up to the same threshold, where the

confidence interval for this family is notably wide and the average F1 score is

low. Beyond a confidence threshold of 0.4, our model excels in identifying the

novel ramnit specimens, correctly classifying approximately 80% of these as
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novel. Furthermore, beyond the confidence threshold of 0.8, the confidence

intervals for all samples converge to a narrower range, indicating that the

model becomes more confident in its predictions.

Experiments on the MOTIF Dataset

Family Label Aliases
181 icedid
285 phorpiex, trik
30 azorult, rultazo
416 ursnif, gozi, goziisfb, isfb, dreambot, hpursnif, wastenif
230 maze, mazeransom, mazedec, chacha
407 trickbot, trickster, totbrick, trickybot, trick, hptrickbot, trickbotmodule, trickbt
217 locky, lockycrypt, hplocky
150 gandcrab, gandcrypt, gandcrab4, ransomgandcrab, gandcrabv4, grandcrab, hpgandcrab, gandcrab04

Table 6.4: The table presents a comprehensive list of aliases for the families
included in this dataset, alongside the original family labels from the MOTIF
dataset. The selected first alias that will be shown in our experiments are
highlighted for each family.

We next advance to demonstrating the model’s capabilities with another

dataset, specifically the MOTIF dataset. Given that the MOTIF dataset

is considerably smaller than EMBER-2018, we have included an additional

malware family in our experiments, increasing the total number of families

to eight. The distribution of the training and testing sets for this phase of

experiments is shown in Figure 6.17. Unlike the EMBER-2018 dataset, which

provides AVClass labels for malware families, the MOTIF dataset includes

aliases for these families. Since each antivirus engine may assign di↵erent

192



(a)

(b)

Figure 6.17: Dataset distribution for the experiments for MOTIF dataset is
shown. The x axis displays the first alias provided for the given family in the
MOTIF dataset. (a) The heatmap displays the average number of samples
in the train and test sets for each malware family. (b) For each of the 10
experiments, we randomly sample the dataset. This heatmap illustrates the
confidence intervals for the samples in the train/test split for each malware
family.
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aliases to the malware families, each sample may contain multiple aliases.

In Figure 6.17, we display the first alias that appears for each given sample

in the dataset. We have chosen the malware family represented by the first

alias, gandcrab, to represent the novel family, and have excluded it from the

training set.

For completeness, Table 6.4 displays the full list of aliases associated with

each malware family. This table also includes the original malware family

labels from the dataset. The aliases that are utilized in our figures and results

are highlighted in bold.

We first compare our method against semi-supervised baselines using the

risk-coverage curve and the area under these curves as shown in Figure 6.18.

Due to the sub-optimal performance of the confidence metric with Data Aug-

mentation observed in our previous experiments, we now limit our analysis

to using Ensemble Voting and Projection Similarity as confidence metrics

for MalwareDNA. The initial observation from this figure, consistent with

previous results, is that our method surpasses the semi-supervised baselines,

which are not tailored to detect novel malware families. Additionally, both

the baseline models and our method exhibit a performance decline on this

dataset, indicating that MOTIF dataset is more challenging than EMBER-
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Figure 6.18: Risk-Coverage (RC) curve when classifying malware families and
novel malware together with the area under the RC (AURC) for di↵erent
MalwareDNA confidence metrics and our semi-supervised baselines on the
MOTIF dataset.

2018. In the EMBER-2018 dataset, we assessed the confidence metrics using

a risk-coverage curve in Section 6.0.5, where the MalwareDNA with Ensemble

Voting achieved an AURC score of 0.16. However, while this metric contin-

ues to perform best in the MOTIF dataset, the score has decreased to 0.36.

By contrast, our baseline model attains a score of 0.57, significantly lower

than our approach. Another notable finding from this figure is that Ensemble

Voting maintains approximately 0 risk until a coverage rate of about 0.15.
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Therefore, if coverage is not the primary objective in a malware detection

system, our system could be e↵ectively employed to classify malware families

with high accuracy at lower coverage levels.

We next examine the performance of the models at low and high coverage,

as indicated by F1 scores presented in Figure 6.19. The first point to note is

that our model’s performance deteriorates at high coverage, achieving an F1

score of approximately 0.6, as shown in Figure 6.19-a, yet it still surpasses

our baselines. This figure also illustrates that our semi-supervised baselines

outperform MalwareDNA with Projection Similarity, while Ensemble Voting

remains the most e↵ective for detecting novel specimens. Conversely, in

Figure 6.19-b, where we reduced the coverage to enhance performance, our

method’s F1 score approaches 0.95, significantly improving the detection of

novel malware families. However, this improvement comes with the cost of a

higher number of undecidable cases among the malware samples, resulting in

a low coverage rate. In addition, at lower coverage, a notable issue arises. Our

method fails to accurately classify the locky malware family using Projection

Similarity.

We further compare the models in Tables 6.5 and 6.6. Table 6.5 dis-

plays results for low coverage, which is tailored towards detecting more novel
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(a)

(b)

Figure 6.19: Mean F1 scores, accompanied by confidence intervals (CIs),
are reported for each malware family when comparing MalwareDNA across
various confidence metrics with both our supervised and semi-supervised
baselines. We assess the performance of all models at both low and high
coverage rates. Recall that the coverage rate refers to the proportion of
non-abstaining predictions, indicating instances where the model has made
a decision. A high coverage rate implies that the model made decisions for
the majority of samples, whereas a low coverage rate increases the frequency
of abstaining predictions to gain model performance. Low coverage results
are selected and reported based on the average across all experiments. Dif-
ferently, high coverage results are determined by selecting confidence levels
that yield the most accurate detection of a novel malware family as novel
using the reject-option. (a) High coverage rate results. (b) Low coverage
rate results.
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Model F1 Precision Recall Coverage (%) Reject Novel (%)
MalwareDNA (Projection Similarity) .858 (+-.059) .912 (+-.058) .884 (+-.060) 13.17 (+-1.16) 96.81 (+-2.29)
MalwareDNA (Ensemble Voting) .906 (+-.012) .922 (+-.013) .907 (+-.013) 16.93 (+-0.51) 97.94 (+-0.21)
XGBoost .562 (+-.113) .542 (+-.125) .734 (+-.125) 100 (+-0) 0 (+-0)
LightGBM .545 (+-.111) .502 (+-.121) .745 (+-.130) 100 (+-0) 0 (+-0)
XGBoost-SelfTrain .499 (+-.007) .569 (+-.029) .682 (+-.025) 72.85 (+-2.98) 45.35 (+-4.87)
LightGBM-SelfTrain .324 (+-.046) .440 (+-.020) .598 (+-.019) 27.86 (+-1.90) 27.86 (+-3.71)

Table 6.5: F1, Precision, Recall, and detection percentage for novel family
scores shown for our method as compared to our baselines for the confidence
metrics that resulted in low coverage.

Model F1 Precision Recall Coverage (%) Reject Novel (%)
MalwareDNA (Projection Similarity) .432 (+-.008) .565 (+-.010) .445 (+-.008) 17.37 (+-0.79) 96.81 (+-2.29)
MalwareDNA (Ensemble Voting) .634 (+-.010) .683 (+-.010) .646 (+-.011) 52.91 (+-1.32) 56.72 (+-1.48)
XGBoost .562 (+-.113) .542 (+-.125) .734 (+-.125) 100 (+-0) 0 (+-0)
LightGBM .545 (+-.111) .502 (+-.121) .745 (+-.130) 100 (+-0) 0 (+-0)
XGBoost-SelfTrain .499 (+-.046) .569 (+-.030) .682 (+-.024) 72.85 (+-2.91) 45.35 (+-4.87)
LightGBM-SelfTrain .324 (+-.039) .440 (+-.020) .598 (+-.018) 85.14 (+-2.04) 27.86 (+-3.81)

Table 6.6: F1, Precision, Recall, and detection percentage for novel family
scores shown for our method as compared to our baselines for the confidence
metrics that resulted in high coverage.

families and maintaining higher model performance. Conversely, Table 6.6

presents the results for high coverage. It can be seen in these tables that

our model achieves a high F1 score of 0.9 with Ensemble Voting at a low

coverage rate of 16%. At this coverage rate, 97% of novel families are cor-

rectly classified as novel using the reject-option. In contrast, our baselines

perform considerably worse, achieving a higher recall but a lower precision

score. This disparity indicates that many classes are detected inaccurately,

stemming also from the inclusion of samples from the novel class. At a higher

coverage, the performance of MalwareDNA with Ensemble Voting declines

to an F1 score of 0.63, yet it still surpasses our baselines at an increased
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coverage rate of 52%. It is important to note that the best-performing base-

line model achieves an F1 score of 0.56 without the reject-option, and thus

this score reflects a 100% coverage rate. Another notable observation is that

Projection Similarity does not significantly increase its coverage, remaining

at around 17%, but it still detects 96% of the novel families e↵ectively. The

main takeaway from these tables is that our model can be used to classify

malware families more accurately than our baselines; however, our baselines

is be able to obtain a higher coverage rate.

Simultaneous Classification of Malware, Malware Families, and

Novel Malware

As the final approach to analyzing the performance of MalwareDNA,

we have designed an experiment that incorporates benign samples into the

dataset. For this purpose, we return to the EMBER-2018 dataset. We in-

clude a figure that depicts the training and testing splits, as shown in Figure

6.20. This experimental setup aims to evaluate our model’s ability to simul-

taneously distinguish malware from benign-ware, classify malware families,

and detect novel specimens. While our previous analyses focused on specific

experimental conditions, testing targeted settings where the specimen was
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(a)

(b)

Figure 6.20: Dataset distribution for the experiments for ”Simultaneous
Classification of Malware, Malware Families, and Novel Malware” is shown.
(a) The heatmap displays the average number of samples in the train and
test sets for each malware family. (b) For each of the 10 experiments, we
randomly sample the dataset. This heatmap illustrates the confidence inter-
vals for the samples in the train/test split for each malware family.
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Figure 6.21: This figure presents the average F1 scores for each supervised
and semi-supervised model compared to MalwareDNA, utilizing various con-
fidence metrics. The performance, represented by the average F1 score across
all malware families and benign specimens, is reported for both high and low
coverage rates.

already known to be malware, this setup emulates a more realistic scenario

where a specimen could also be benign.

We report our results in Figure 6.21, where we compare the methods at

low and high coverage rates. Low coverage is reported using the average of all

results, while high coverage is determined by selecting the confidence score

that achieves the highest detection rate of novel malware families. Notably,

our model outperforms the baselines at both high and low coverage rates

across all confidence metrics. The scores for baselines remain constant at

di↵erent coverage rates as they lack a reject-option. At higher coverage

levels, our model’s performance again declines for all confidence methods, yet

it still exceeds that of the baselines. Although previous work reported state-
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of-the-art results with these baselines, their lower scores in our experiments

can be attributed to the more challenging task of distinguishing between

benign-ware and malware, classifying malware families, and detecting novel

specimens all at the same time.

Model High Coverage (%) Low Coverage (%)
MalwareDNA (Projection Similarity) 88.11 (+-.509) 30.88 (+-1.985)
MalwareDNA (Ensemble Voting) 57.56 (+-1.167) 16.57 (+-.461)
MalwareDNA (Data Augmentation) 94.75 (+-.376) 36.68 (+-2.721)
XGBoost 100 (+-0) 100 (+-0)
LightGBM 100 (+-0) 100 (+-0)
XGBoost-SelfTrain 90.65 (+-1.555) 90.65 (+-1.419)
LightGBM-SelfTrain 96.26 (+-.648) 95.98 (+-.649)

Table 6.7: Coverage rates at high and low experiment settings are reported
for each model.

In Table 6.7, we present the actual coverage rates for the ”low” and ”high”

coverage categories as outlined in Figure 6.21. The high coverage setting for

Ensemble Voting is 57%, while the low coverage setting decreases to 16%.

Projection Similarity and Data Augmentation achieve significantly higher

coverage rates, reaching 88% and 94% respectively for the high coverage

settings, while their rates decrease to around 30% in the low coverage settings.

These results demonstrate that with a high coverage rate of approximately

94% for Data Augmentation, we can exceed the performance of our baseline

models, achieving an F1 score of around 0.55.

Finally, Table 6.8 presents the average tuning, training, and testing times

202



Model Tune Time Train Time Test Time
MalwareDNA (Projection Similarity) 0 19916.18 (+-3021.74) 217.3 (+-35.01)
MalwareDNA (Ensemble Voting) 0 19916.18 (+-3021.74) 214.4 (+-33.70)
MalwareDNA (Data Augmentation) 0 19916.18 (+-3021.74) 1046.8 (+-187.07)
XGBoost 398.59 (+-55.63) 1.40 (+-0.32) 0.03 (+-0.01)
LightGBM 769.69 (+-67.50) 8.44 (+-1.28) 0.23 (+-0.03)
XGBoost-SelfTrain 398.59 (+-55.63) 14.25 (+-3.99) 0.08 (+-0.01)
LightGBM-SelfTrain 769.69 (+-67.50) 41.51 (+-13.24) 0.10 (+-0.02)

Table 6.8: This table shows the tuning, training, and testing time for each
methods. Time is reported with seconds and confidence interval is included.

for all models. The first point to make on this table is that our method does

not require a tuning phase, as it employs dimensionality reduction with auto-

matic model determination for signature extraction, which does not require

hyper-parameter selection. In contrast, our baseline models undergo exten-

sive tuning with Optuna across 200 trials, utilizing stratified sampling across

five cross-validations in each trial to identify the optimal hyper-parameters.

It is important to note that the tuning times for the supervised and semi-

supervised models are identical, as the semi-supervised models use the same

hyper-parameters as their supervised counterparts. In addition, this tuning

time for the baseline models can be reduced by distributing the Optuna trials

on a HPC system.

The training time for MalwareDNA is significantly longer than that of

our baseline models. This duration refers to the time spent building the

latent signature archive, facilitated by the use of four HPC compute nodes.

203



Potential reductions in training time could be explored in future work, pos-

sibly through the utilization of a greater number of compute nodes or more

e�cient automatic model determination techniques, which are discussed in

the Future Work section, Section 9.

Lastly, the testing or prediction time for our model is also considerably

longer as compared to our baseline models. Future improvements include

speeding up this process by employing multi-processing or vector multiplica-

tion techniques to compute cosine similarity scores across the samples in the

testing set.
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Chapter 7

Open Source Code Outcomes

Software Link Dense Sparse GPU CPU Multiprocessing HPC
RFoT https://github.com/MaksimEkin/RFoT 3 3 3 3 3 —
pyCP ALS https://github.com/MaksimEkin/pyCP_ALS — 3 — 3 — —
pyCP APR https://github.com/lanl/pyCP_APR 3 3 3 3 — —
T-ELF https://github.com/lanl/T-ELF 3 3 3 3 3 3

Table 7.1: Software packages released through the studies conducted on ten-
sor decomposition, including those presented in this dissertation, are listed
below. The Software column provides the name of each software package.
The Dense and Sparse columns indicate whether the software can handle
dense and sparse tensors and matrices, respectively. The GPU and CPU
columns specify the software’s compatibility with GPU and CPU hardware.
Finally, the HPC column denotes the software’s high-performance comput-
ing capabilities.

We have developed and released several Python libraries, each with unique

capabilities. Table 7.1 provides a summary of these libraries. Notably, the

RFoT package is available with multiprocessing features, supporting both

GPU for accelerated computing and CPU for standard computing. This
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library e�ciently handles both sparse and dense matrices and tensors.

The pyCP APR library was initially developed for cyber anomaly detec-

tion. RFoT utilizes this library for tensor decomposition and for identifying

malware clusters. Additionally, we introduced pyCP ALS as a separate li-

brary, which RFoT also uses for tensor decomposition-based clustering. Im-

portantly, pyCP APR includes GPU capabilities, which significantly enhance

its computation speed compared to its predecessor available in Matlab Tensor

Toolbox [22, 72]. We have previously demonstrated this performance gain

with use of GPUs for CP-APR algorithm in [72].

HNMFk Classifier and MalwareDNA codes have been patented, and thus,

we have not released these codes publicly. However, both techniques employ

the hierarchical NMFk feature from T-ELF, which is equipped with advanced

High-Performance Computing (HPC) capabilities which we have discussed

previously in Section 6.0.4.

RFoT, pyCP ALS, and pyCP APR employ a custom sparse tensor for-

mat, which was originally introduced in the MATLAB Tensor Toolbox [21].

This format enables e�cient representation of tensors and matrices in COO

format. In this structure, a matrix records the coordinates of non-zero ele-

ments—each row corresponding to a single coordinate—and a separate vec-
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tor stores the non-zero elements themselves. The COO representation allow

for e�cient dimensionality reduction operations on sparse tensors and ma-

trices. Di↵erently, T-ELF utilizes the CuPy library, specifically its CuPyx

extension, to facilitate e�cient sparse matrix operations on both CPUs and

GPUs [136]. As discussed in Section 6.0.4, T-ELF leverages threading to

manage concurrent operations and to launch parallel tasks, whereas RFoT

harnesses Python’s Joblib library for multiprocessing [102]. The shift from

Joblib was strategically made to enhance the e�ciency of GPU operations

with CuPy during parallel task execution. Moreover, while pyCP ALS and

pyCP APR have been translated into Python with additional GPU capabil-

ities via the PyTorch [138] backend, they preserve the core design principles

of the original MATLAB implementation from the MATLAB Tensor Tool-

box. Di↵erently, T-ELF [69] incorporates several distinct algorithmic design

modifications, including improved GPU host-to-device communication, opti-

mized data transfer and copying, and enhanced settings for e�cient process

utilization, among others.

Finally, all the software listed in Table 7.1 follows to Python standards

and is modularized for code organization. Each tool is designed as an instal-

lable Python library, which can be installed using pip [1]. These libraries are
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also accompanied by example Jupyter Notebooks to demonstrate their use

[110] and include unit tests that integrate with GitHub’s Continuous Integra-

tion (CI) pipeline. The documentation for each library is thorough, with a

documentation website generated using Sphinx and hosted as a GitHub Page

[159]. Additionally, T-ELF utilizes the Git software development life cycle,

complete with a project board. These projects also feature easy installation

guides that leverage Anaconda’s Conda environment for setup [5], facilitating

the use of our tools across various devices. Moreover, all libraries are designed

with an API style following the Scikit-learn’s design principles, which fosters

a user-friendly and familiar interface for interacting with the packages [140].

Overall, our libraries are designed to be e�cient, user-friendly, and follow

rigorous software development standards.
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Chapter 8

Conclusions

In this dissertation, we presented three novel semi-supervised malware

characterization methods based on tensor decomposition and machine learn-

ing. Our approaches, named RFoT, HNMFk Classifier, and MalwareDNA,

are designed to address various shortcomings in the large-scale malware anal-

ysis domain. We have demonstrated the e�cacy of our methods using two

datasets for Windows PE malware and benign-ware, using static malware

analysis based features. Our experiments were conducted in real-world-like

settings to test the methods against extreme class imbalance, large-scale data,

and up to extreme number of malware families. These tests also included

scenarios with limited labeled training data, the introduction of previously
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unseen malware families, and the simultaneous analysis of benign software

and malware.

Additionally, we conducted ablation studies and hyper-parameter analy-

ses to validate our hypotheses. We benchmarked our results against other su-

pervised and semi-supervised techniques that have previously reported state-

of-the-art outcomes on these datasets. Our findings reveal that while baseline

models lose performance under more realistic experimental conditions, our

methods significantly outperform them with a trade-o↵ in reduced coverage

rate. A key feature of our approaches is the incorporation of a reject-option,

which allows the model to express uncertainty, or the ability to say ”I do

not know,” instead of confidently making a wrong decision. In the domain

of large-scale malware analysis, the reject-option feature allow the detection

new threats, particularly novel malware, and helps maintain model perfor-

mance in environments with scarce labeled data. By enabling the model to

reduce its coverage rate, this feature e↵ectively minimizes the risk of misclas-

sification, thus providing a more robust and reliable analysis in uncertain or

evolving threat landscapes.

In operational settings, security analysts may consider using our methods,

which yield results with lower risk (higher accuracy), as the first layer of
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defense. The abstained predictions can be analyzed in a second layer using

traditional machine learning approaches, such as an ensemble of XGBoost

and LightGBM models.

Furthermore, we have published several open-source libraries to support

our methods, enhancing their accessibility and functionality with features

such as multiprocessing, high-performance computing (HPC), and GPU-

accelerated computation.
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Chapter 9

Future Work

Future work will include testing our models on additional datasets. For

instance, the recently released MalDICT dataset, which includes classifica-

tion tasks based on behavior, malware family, and vulnerabilities [104], will

be utilized. Future experiments will explore whether novel vulnerabilities

or behavioral classes of malware can be detected via reject-option using the

MalDICT dataset. Furthermore, future studies could employ a temporal

train-test split of this dataset to implement a time-based data division to

support the idea behind real-world like settings. Additional future work will

extend these experiments to incorporate features derived from dynamic mal-

ware analysis.
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Future work will also involve strategies to enhance the e�ciency of Mal-

wareDNA. In Section 6.0.5, we demonstrated that the computational time

required for MalwareDNA is greater than that for our baselines. This com-

putational time could be reduced by utilizing existing HPC capabilities and

by deploying a larger number of compute nodes during the construction of

the signature archive. Additionally, prediction times could be minimized by

employing vector and matrix operations for the calculation of similarity or

confidence scores.

Furthermore, the time required to construct the latent signature archive

in MalwareDNA and to perform hierarchical clustering in the HNMFk Clas-

sifier could be reduced through a more e�cient automatic model determi-

nation technique. Recall that both MalwareDNA and HNMFk Classifier

employ NMFk for dimensionality reduction, as discussed in Section 2.0.5

[10]. NMFk heuristically searches for the optimal matrix/tensor rank, or K,

by decomposing the matrix/tensor linearly for each rank within a specified

range. For example, given
⌥⌃ ⌅⇧Ks=[1,2,3] , NMFk will decompose the matrix

X for each k = 1, k = 2, and k = 3. It then evaluates the stability and

accuracy for each rank to determine the ideal rank. The selection of this

rank is based on a marked decline in silhouette scores from the clustering of
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latent patterns and cluster centroids. This specifically involves the clustering

of bootstrap samples of W and H latent factors, for a given rank, followed by

a convergence in the relative reconstruction error. This technique, a LANL

patented method for automatic model determination, was developed by Dr.

Alexandrov [11]. The necessity of decomposing the matrix for each rank

can lead to prolonged computation times, especially when NMFk operations

are conducted thousands of times in a hierarchical framework. Future work

include integrating heuristics for more e�cient search of matrix rank into

HNMFk Classifier and MalwareDNA [26].
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