
MalwareDNA: Simultaneous Classification of
Malware, Malware Families, and Novel Malware

1st Maksim E. Eren
Advanced Research in Cyber Systems

Los Alamos National Laboratory
Los Alamos, USA
maksim@lanl.gov

2nd Manish Bhattarai
3rd Kim Rasmussen

4th Boian S. Alexandrov
Theoretical Division

Los Alamos National Laboratory
Los Alamos, USA

5th Charles Nicholas
CSEE

University of Maryland, Baltimore County
Maryland, USA

Abstract—Malware is one of the most dangerous and costly
cyber threats to national security and a crucial factor in modern
cyber-space. However, the adoption of machine learning (ML)
based solutions against malware threats has been relatively
slow. Shortcomings in the existing ML approaches are likely
contributing to this problem. The majority of current ML
approaches ignore real-world challenges such as the detection
of novel malware. In addition, proposed ML approaches are
often designed either for malware/benign-ware classification or
malware family classification. Here we introduce and showcase
preliminary capabilities of a new method that can perform
precise identification of novel malware families, while also uni-
fying the capability for malware/benign-ware classification and
malware family classification into a single framework.

Index Terms—non-negative matrix factorization, malware,
semi-supervised learning, reject-option

I. INTRODUCTION

Approximately half a million new malware are reported
daily, which drives the increased utilization of Machine
Learning (ML) based automated security systems to combat
malware [1]. Several ML solutions have previously been
introduced for distinct tasks of malware detection and malware
family classification. The objective of malware detection is to
identify a given file as benign or malicious. In contrast to
malware detection, malware family classification assumes that
any given sample is already known to be malicious, and we
want to know which family it belongs to [2]. Existing solutions
often use separate ML systems, where one system may be
used for detecting malware, and another system is then used
to classify the detected malware into a given family. A system
that can unify these tasks would have operational benefits such
as reducing the complexity of maintaining separate systems.

In addition, despite its benefits, the adoption of ML-based
solutions against malware threats has been relatively slow due
to shortcomings in these systems [2]. The majority of the
past two decades of research on malware family classification,
has not sufficiently accounted for core evaluation criteria
including the ability to identify new malware [2], [3]. New
malware samples are created regularly by threat actors, which
create new versions of already existing malware with identical
functionality [2]. Malware analysts regularly go through large
quantities of malware samples to understand whether a new

malware specimen belongs to a previously known malware
family. Classifying a new malware sample into a family or
identifying it as novel can reduce the number of files analysts
need to examine, and aid in understanding the behavior of the
malware; this in turn helps estimating the severity of the threat
and developing mitigation strategies [2]. At the same time,
semi-supervised learning in the malware classification field has
not been widely explored despite its superior generalization to
new data as compared to supervised systems [2]. With the ever-
growing quantity of malware and their complexities there is an
urgent need to improve existing solutions and their operational
architectures to drive the increased adaption of ML solutions.

Here we introduce a new semi-supervised method, named
MalwareDNA, that unifies the capability of malware detection
and malware family classification into a single framework,
while also addressing the shortcomings of novel malware
family identification. In this way, MalwareDNA can classify
known malware families and separate them from benign-ware,
as well as identify new types of families, all at the same time.
Our method uses hierarchical non-negative matrix factorization
(NMF) with automatic model determination [4], which enables
data modeling with high specificity and accuracy, to build
an archive of latent signatures (identifiers) of malware and
benign-ware. These signatures are then be used for precise
real-time downstream detection of malware and classification
of malware families. Our method also includes a fast opti-
mization method to perform real-time identification of unseen
signatures (or novel malware families) by implementation of
the reject-option method [5]. To the best of our knowledge, we
are the first to introduce a framework that combines malware
detection, malware family classification, and novel malware
family identification capabilities into a single system.

II. RELEVANT WORK

As part of the semi-supervised scheme, our method lever-
ages clustering and similarity scores for categorization of
novel samples. A number of previous works have also used
clustering approaches, where the ensemble of clustering algo-
rithms with distinct characteristics has been shown to yield
accurate results for malware classification [6], [7]. Likewise,
similarity metrics to extract embeddings (distance-based fea-



ture vectors) has also shown to be a successful technique for
malware analysis [8]. These methods, however, only focus on
malware/benign-ware detection or malware family classifica-
tion, and do not posses the ability to identify novel families.

Several works did consider benign-ware as a class among
the classes of malware families [9], [10]. This allowed these
methods to separate benign-ware from malware and also
classify malware families simultaneously. At the same time,
these prior works attempted to detect rare specimens by
grouping multiple families into a single ”others” class. The
most realistic malware family classification work was done
by Huang et al. which targeted 100 classes where two of
the classes include one for benign samples and ”others”
[10]. While this approach introduced an ability to detect rare
specimens by the ”others” class, it yields poor generalization
to new or never before seen specimens as was also pointed
out by Loi et al [9]. Loi et al. reports that their false positives
are heavily represented by the families collected within the
”others” class due to the supervised method’s inability to
learn the patterns of these families from a small number of
specimens. Conversely, our method does not require training
with rare specimens, instead it posses the abstaining prediction
ability (the reject-option). This allows our method to uniquely
combine the abilities of malware detection and malware family
classification, as well as novel malware family identification.

III. METHOD
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Fig. 1. Building the archive of latent signatures.

A. Building Signature Archive
The overview of how the signature archive is built is

shown in Figure 1. MalwareDNA first applies NMF to the
observational data X (S1). NMF is an unsupervised learning
method based on a low-rank matrix decomposition [11]. NMF
approximately represents an observed non-negative matrix,
X ∈ Rn×m

+ , as a product of two (unknown) non-negative ma-
trices, W ∈ Rn×k

+ whose k columns are the latent signatures
each with n features, and H ∈ Rk×m

+ whose rows are the
activities of each one of the k signatures (latent features) in
each m samples, where usually k ≪ m,n. This approximation
is performed via non-convex minimization constrained by the
non-negativity of W and H: min||Xij −

∑k
s=1 WisHsj ||F .

The NMF minimization requires prior knowledge of the
latent dimensionality k for accurate data modeling, which is
usually unavailable [12]. Choosing too small a value of k
leads to a poor approximation of the observables in X (under-
fitting), while if k is chosen to be too large, the extracted

features also fit the noise in the data (over-fitting). In this work,
we use NMFk that incorporates automatic model selection for
estimating k [4], [13]. NMFk integrates NMF-minimization
with custom clustering and Silhouette statistics, and combines
the accuracy of the minimization and robustness/stability of the
NMF solutions, using a bootstrap procedure (i.e., generation
of a random ensemble of perturbed matrices) is applied to
estimate the number of latent features k. MalwareDNA uses
a publicly available implementation of NMFk [14].

Next, we apply a custom H-clustering to assign each of the
samples (the columns of X) to one of the k signature-clusters
(S2). In each of these clusters, some of the samples may
have different labels (non-uniformity) based on the confidence
probability. We evaluate the uniformity of the samples in each
cluster, determining whether all labels are the same (S3). When
a uniform cluster is identified, we separate the samples of
this cluster from the data, X, and add the annotated (by the
labels) cluster centroid, corresponding column of W, to our
archive of signatures. Otherwise, we continue with successive
factorizations in a hierarchical manner to separate the mixed
latent signatures as shown in Figure 1.

B. Inference Using the Signature Archive

During testing for real-time inference, we project each new
sample onto the signature archive using Non-negative Least
Squares Solver (NNLS). This allows us to perform real-time
identification by representing each new sample as a combi-
nation of signatures recorded in the archive and estimating
the accuracy, or similarity score, of this representation. We
utilize the cosine similarity score of the NNLS projection
of the new sample to the signatures in archive. We utilize
the similarity scores, together with a threshold, t, to define
the malware/benign-ware classification: When a signature pos-
sesses a similarity score above t, the labels of the signature
will be determined as the classification result. Otherwise, when
the similarity score is below t, it will be determined to be a
novel malware family (t = 1.0 in our experiments).

IV. EXPERIMENTS

To illustrate the capabilities of MalwareDNA, we ran-
domly sample 1k benign-software and malware specimens
from four families (ramnit, adposhel, emotet, and zusy) us-
ing a popular benchmark dataset, EMBER-2018 [15]. We
select ramnit to represent a malware novel/unseen family.
We use the static analysis features byte histogram and en-
tropy, print table distribution, strings entropy, number of
strings/exports/imports/sections, file size, and code size.

Fig 6. Risk-Coverage (RC) curve when classifying the malware 
families and the benign-software, together with the area 
under the RC score (AURC). Here lower score is better, and the 
RC curve models the trade-off between the coverage and the 
accuracy. 

Fig. 2. Risk-Coverage (RC) curve when classifying malware families and the
benign-software, together with the area under the RC (AURC).



TABLE I
PERFORMANCE OF MALWAREDNA COMPARED TO BASELINES.

REJECTION SEEN PROVIDES THE FALSE REJECTION PREDICTIONS FOR
THE SAMPLES THAT BELONGS TO KNOWN CLASSES. REJECTION NOVEL IS
THE TRUE REJECTION PREDICTIONS FOR THE SAMPLES THAT BELONGS TO

A NOVEL MALWARE FAMILY. XGBOOST+SELFTRAIN AND
LIGHTGBM+SELFTRAIN ACHIEVE AURC SCORE OF 0.654 AND 0.651.

Model F1 Precision Recall Rejection Seen Rejection Novel
MalwareDNA (ours) 0.975 0.975 0.977 15.70 % 100.00 %
XGBoost 0.416 0.699 0.510 NA NA
LightGBM 0.297 0.749 0.338 NA NA
XGBoost+SelfTrain 0.096 0.258 0.108 4.34 % 18.09 %
LightGBM+SelfTrain 0.096 0.078 0.197 2.89 % 17.14 %

The performance of our method is reported with the Area
Under the Curve of Risk-Coverage (AURC) [5] in Figure 2.
AURC models the trade-off between the coverage (the number
of samples for which the non-rejecting predictions were made)
and the risk which is measured with 0/1-loss. AURC score is
reported between 0 and 1, and lower AURC is preferred over
higher AURC. MalwareDNA achieve AURC of 0.02 when
classifying the three malware families and benign samples.
Our score indicates that we can achieve high coverage with
minimal increase in the risk (false rejection predictions).

At 84.3% coverege, MalwareDNA achieves an F1 score of
0.975 when classifying the malware families and the benign-
software and 100% true-rejection predictions for the chosen
unseen family ramnit, which illustrates our method’s ability
to identify novel malware families (Table I). In Table 1, we
also baseline our method against the state-of-the-art super-
vised malware classifiers XGBoost [16] and LightGBM [17].
We further extend these baselines with the SelfTrain [18]
algorithm to create semi-supervised models. We note that the
previous work has used these models to report benchmarking
against this dataset [15], [19]; however, we expose these
models to a more challenging task of classifying malware
families, separating them from benign samples, and detecting
novel malware families all at the same time. Our baselines
are tuned using Optuna [20] over 100 trials with 5-fold
stratified shuffle cross-validation. Our benchmarking against
the baseline models and the poor performance of these models,
points out both the difficulty of the task, and MalwareDNA’
unique capability to both accurately detect malware, classify
families, while simultaneously detect novel malware families.

V. CONCLUSION

In this paper, we introduced a new semi-supervised method
that unifies three capabilities into a single framework: malware
detection, malware family classification, and identification of
novel malware families. Our preliminary results showcased the
precise novel malware detection capability of our system while
also outperforming state-of-the-art methods in a more difficult
problem of solving all three inference tasks.
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