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Abstract—As the attack surfaces of large enterprise networks
grow, anomaly detection systems based on statistical user behav-
ior analysis play a crucial role in identifying malicious activi-
ties. Previous work has shown that link prediction algorithms
based on non-negative matrix factorization learn highly accurate
predictive models of user actions. However, most statistical link
prediction models have been constructed on bipartite graphs,
and fail to capture the nuanced, multi-faceted details of a
user’s activity profile. This paper establishes a new benchmark
for red team event detection on the Los Alamos National
Laboratory Unified Host and Network Dataset by applying a
tensor factorization model that exploits the multi-dimensional
and sparse structure of user authentication logs. We show that
learning patterns of normal activity across multiple dimensions
in one unified statistical framework yields improved detection
of penetration testing events. We further show operational value
by developing fusion methods that can identify anomalous users,
source devices, and destination devices in the network.

Index Terms—anomaly detection, Poisson tensor factorization,
cyber security, canonical polyadic decomposition

I. INTRODUCTION

Detection of compromised accounts and insider threats
continues to be a significant challenge for cyber defenders.
In 2016, when Turcotte et al. introduced the Poisson matrix
factorization model for cyber anomaly detection, 63% of
confirmed data breaches involved stolen user credentials [1].
This figure has climbed to 80% in 2020 [2], and the average
number of yearly security breaches has increased by 67%
within the past 5 years [3]. At the same time, the cost of
malicious insider attacks increased by 15% in 2019, and
continues to be one of the threat types that takes the longest to
resolve [3]. When hunting for intruders or malicious insiders
on their networks, incident response teams primarily rely on
rule-based indicators such as hand-crafted signatures or open-
source threat intelligence feeds. Although rule-based indicators
perform well when detecting known attacks, they require
immense manual work to tune for each enterprise network, and
often fail to detect patient and persistent attackers. Currently,
alerts are generated only for 9% of attacks [4], and the average
cost of a security breach is $3.86 million [5]; therefore, there
is an urgent need to improve statistical anomaly detection
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Fig. 1. Hourly authentication events from multiple source computers over
90 days for one compromised user in the LANL Unified Host and Network
Dataset. The user’s activity reveals time- and device-based predictable patterns
that deviate from the single anomalous log-on.

methods and their associated operational workflows in order
to drive increased adoption.

Generating actionable alerts with anomaly detection systems
requires identifying unusual events that correspond to mali-
cious activity. New events happen continually on a network,
and no labelled datasets exist with enough detail to build
reliable detection systems using supervised learning alone.
Because the number of daily events on a corporate network
can easily reach into the millions or billions, deployable
anomaly detectors must achieve extremely low false alarm
rates. Eliminating rare, but benign, events from these alerts
is challenging, since human activities are difficult to predict;
for example, users authenticate to new network resources
on a continual basis. This work builds upon state-of-the-art
algorithms for user behavior analysis to build more nuanced
methods of normal user behavior over time. We show that
our model can accurately detect actions that deviate from
the norm by demonstrating its performance detecting stolen
user credentials during a penetration testing event on the Los
Alamos National Laboratory (LANL) network.

Previous work has shown that recommendation system mod-
els, based on matrix factorization, can identify “peer groups”
of users and devices, which allow data-driven predictions
of future user actions [1], [6], [7]. Users tend to exhibit a
seasonal behavior in the network, where patterns of activities
are correlated in time. For example, a simple predictable user
behavior is an employee initiating a logon from a desktop com-
puter every weekday, except Friday, at approximately 7:00am.
Figure 1 shows activities from such a real, anonymized LANL
user (User087542) over 90 days.U.S. Government work not protected by U.S. copyright



In this work, we extend peer-based models to include
multiple dimensions of an activity profile, including users,
source devices, destination devices, authentication status, and
time. We apply tensor factorization to extract high-dimensional
latent activity profiles that capture correlations across observed
dimension. Our analysis subsequently leverages these learned
profiles to improve the sensitivity and specificity of peer-based
anomaly detection.

Our contributions include:
• Generalizing existing statistical models to jointly learn

multi-dimensional activity profiles.
• Demonstrating that jointly-learned activity profiles im-

prove the detection of anomalous events.
• Presenting state-of-the-art results for the task of anoma-

lous entity detection, for example, identifying a penetra-
tion testing team’s source device within the top 3 most
anomalous devices during the month-long test period.

• Establishing a new benchmark for red team activity de-
tection on the LANL Unified Host and Network Dataset.

II. BACKGROUND

Our work draws on prior advances in the areas of statistical
anomaly detection and tensor factorization. Here we present a
brief summary of related work in both fields.

A. Anomaly Detection

A variety of classical factorization techniques, such as
Principle Component Analysis (PCA) [8] and Non-negative
Matrix Factorization (NMF) [9], have been applied to detect
anomalies using reconstruction error as a metric. These tech-
niques extract “normal” patterns hidden in the data to perform
dimensionality reduction. However, these models don’t offer a
direct statistical interpretation, and thus don’t directly produce
a p-value for anomalies. Statistical models have stronger
mathematical guarantees, and provide more direct methods for
fusing analytic outputs. Prior studies have explored statistical
Poisson matrix factorization methods, based on recommenda-
tion systems, to perform anomaly detection [1], [6], [10].

Sanna Passino et al. used two bipartite graphs with the
dimensions User - Destination and User - Source, applied
Poisson Matrix Factorization (PMF) to detect anomalies, and
extended their statistical model to incorporate covariates about
users and computers [6]. Similarly, Volkovs et al. showed that a
deep neural network can learn to augment user preference data
and alleviate the problems of cold start [11]. Price-Williams et
al. developed a model that detected anomalous users via their
historic authentication times [10]. Turcotte et al. demonstrated
that Fisher p-value fusion can combine independent p-value
scores of user’s logon and process start events for anomaly
detection [1].

B. Tensor Factorization

Tensors are higher order extensions of matrices [12]. Cyber
event logs can naturally be encoded as tensors. For example,
users authenticating between two devices can be represented
by a 3rd-order tensor with dimensions User, Source, and

Destination where an index XXXu,s,d in this tensor represents
the number of authentications that user u performs going from
source device s to destination device d. In this work, we use
binary tensors, where the element XXXu,s,d is set to 1 if user u
authenticates from source device s to destination device d at
least once, and is set to 0 otherwise.

Tensor factorization is a cutting-edge method for factor
analysis. It decomposes high-dimensional data into factor
matrices where the factor matrices carry the latent features
in each tensor dimension. Specifically, we use a form of
non-negative tensor factorization called Poisson tensor fac-
torization. We choose non-negative factorization because our
dataset is inherently non-negative (i.e., our dataset involves
counts of event types, and a negative event count would be
impossible). Importantly, non-negativity requires the extracted
latent features to be additive components of the original data,
which improves interpretability [13].

Bruns-Smith et al. originally applied Poisson tensor factor-
ization in the cyber security domain [14], but they manually
analyzed their resulting factors to find malicious activity.
While the authors successfully identified indicators of mali-
cious incidents, their manual analysis does not scale to large
data. Our work leverages Canonical Polyadic Decomposition
(CPD) to extend existing Poisson matrix factorization models
and thus automate ranking and scoring.

CPD [15] is an important tool for unsupervised learning,
feature extraction, and dimensionality reduction. By definition,
if a tensor can be written as a single outer product of vectors,
it has rank 1. Any arbitrary tensor can be decomposed as
a weighted sum of rank-1 tensors, which is called Polyadic
Decomposition. If the number R of rank-1 tensors is minimal,
then the decomposition is a CPD. Importantly, in the non-
negative case, a best rank-R approximation always exists [16],
and it is almost always unique [17]. Usually, each factor is
normalized to sum to 1 and weight is absorbed by γr to achieve
a unique solution. For example, an order 3 tensor XXX with
dimensions u, s, d and shape Nu, Ns, Nd can be approximated
by a sum of R rank-1 tensors, each called a component. Each
component is encoded as the outer product of 3 factor vectors,
θ

(u)
r , θ

(s)
r , θ

(d)
r , with lengths N1, N2, and N3, respectively.

Equation (1) shows the CPD tensor approximation, where ◦
represents vector outer product.

XXX ≈ X̂XX ≡
R∑

r=1

γr · θ(u)
r ◦ θ(s)

r ◦ θ(d)
r (1)

The problem of selecting the optimal rank R for a specific
application is essential in finding low-dimensional latent tensor
representations. If we perfectly reconstruct the input tensor,
our tensor factorization carries little information about peer
groups or other shared structure; if our rank is too low, we lose
vital information. Truong et al. discussed this problem in [18],
and introduced the Non-Negative RESCAL method. Minimal
multirank in RESCAL is chosen to be the rank with low
relative error and high silhouette score. Similarly, our model
attempts to find the best rank to deviate from arbitrary rank



selection. Differently than RESCAL, we use log-likelihood on
held-out validation data to find the optimal tensor rank for link
prediction and anomaly detection.

III. MULTIDIMENSIONAL ANOMALY DETECTION

Simultaneous analysis and extraction of latent features by
tensor factorization enhances the detection of unusual activ-
ities by making the system sensitive to different correlations
between the dimensions. For example, we can train our models
to learn user patterns and daily/hourly periodicity jointly.

Our model is based on Poisson CPD. For a D-dimensional
tensor with shape N1, . . . , ND, we model each element as an
independent draw from a Poisson distribution, where the rate
λi1,...,iD (1 ≤ i1 ≤ N1, . . . , 1 ≤ iD ≤ ND) is determined by
a CPD of rank R:

XXXi1,...,ıD ∼ Poisson (λi1,...,iD ) (2)

λi1,...,iD =

R∑
r=1

γr

D∏
d=1

θ
(d)
r,id

(3)

where θ(d)
r is r-th component in the d-th dimension (or factor).

During training, we learn latent factors to maximize the joint
log-likelihood of all observed counts:

logP (XXX) =

N1∑
i1=1

· · ·
ND∑
iD=1

((XXXi1,...,iD · log λi1,...,iD )

− log Γ(xi1,...,iD + 1))− Λ

(4)

where

Λ =

R∑
r=1

γr

[(
D1∑
i1=1

θ
(d)
r,i1

)
· . . . ·

(
ND∑
iD=1

θ
(d)
r,iD

)]
(5)

Note that this log-likelihood function is efficient to compute
on sparse data because the first two terms are 0 whenever the
count XXXi1,...,iD is 0. Therefore, the sum can be implemented
efficiently by summing only over non-zero (i.e. observed)
counts.

The most efficient solver for this likelihood function is
CANDECOMP-PARAFAC Alternating Poisson Regression
(CP-APR) [19], which is equivalent to minimizing the Kull-
back–Leibler divergence with a non-negativity constraint, via
a modified multiplicative update (MU) algorithm1.

A. Rank Selection

CPD is a non-convex problem where it is assumed that the
tensor rank is known [19]. We use log-likelihood (Equation 4)
evaluation on held-out time periods (i.e. validation data) to find
the rank that best predicts future user actions. We split training
data into two separate time periods: validation-train and
validation-test. We fit the tensor factorization using validation-
train on all ranks from 1 to 100 (with a step size of 5 between
10-100), and evaluate log-likelihood on validation-test. The
rank with highest log-likelihood is chosen as R during our
subsequent training and testing procedures.

1CP-APR is available at https://www.tensortoolbox.org/

B. Poisson Rate Smoothing

Because tensors representing cyber security logs are ex-
tremely sparse, we encounter numerical underflow when es-
timating the tensor factorization. In order to alleviate this
problem, we multiplicatively inflate our counts such that the
mean value in the tensor is approximately 1. Additionally,
because of the sparse structure of these tensors, many of the
estimated factors are sparse (i.e. have a large quantity of zero
values). Zero values in the factors result in estimated Poisson
rates of 0 during the testing phase; thus we need to regularize
our estimation procedure. We do this by estimating a rank-1
factorization and a rank-R factorization of the training tensor,
where the optimal R is computed by maximizing validation
log-likelihood. Since the sum of counts across any axis of our
tensor is non-zero, we are guaranteed to have non-zero factors
in our rank-1 factorization. We use this fact to regularize our
estimation of the Poisson rate λi1,...iD :

λi1,...,iD = 0.1 · λ1
i1,...,iD + 0.9 · λRi1,...,iD (6)

C. Anomalous Event Scoring

We perform anomaly detection by computing the p-value
of each observed count during our test period. The p-value is
the probability of observing a count at least as extreme as the
observed value, under the model learned during training time2:
P (Xi1,...,iD ≥ x | λi1,...,iD ). That is, our null hypothesis is
that a user’s behavior will follow our previously learned activ-
ity profile. A lower p-value is an indication of an anomalous
event.

D. Score Fusion

To make operational use of the anomaly scores produced
by our system, we need to summarize these results into the
detection of malicious entities, such as stolen user credentials
or compromised bastion hosts. We achieve this summarization
using p-value fusion of dependent p-values [20]. This fusion is
accomplished by taking the harmonic mean over all p-values,
including the p-values for unobserved events (which are, by
definition, 1). Note that fusion can either produce a ranked list
of entities (e.g. users, source devices, destinations, days, etc.)
or reduce to a lower-dimensional set of events (e.g. user-source
and user-destination interactions, etc.).

Finally, we find that fusing the ranked lists produced by
multiple multi-dimensional tensors allows us to identify mul-
tiple complementary aspects of anomalous behavior, and thus
achieve better results than identifying anomalies with any one
tensor alone. For fusing ranked lists, we use mean reciprocal
rank (MRR) [21].

IV. LOS ALAMOS NATIONAL LABORATORY (LANL)
AUTHENTICATION DATASET

Detailed and diverse datasets at the enterprise scale are
rare in the cyber security domain due to privacy and security
concerns. Turcotte et al. introduced the publicly available

2This p-value can be computed by the Poisson survival function.



TABLE I
TENSOR DETAILS AND TEST SET P-VALUE STATISTICS FOR RED TEAM AND BENIGN EVENTS

Tensor Details Red Team p-value Benign p-value

Dimensions Size % Non-Zero Optimal Rank Mean Std Count Mean Std Count

USDs 11260 x 15055 x 4796 x 2 1.02× 10−7 4 .2721 .4090 119 .9575 .1677 125,285
USDHs 11260 x 15055 x 4796 x 24 x 2 3.04× 10−8 5 .1062 .2621 137 .9801 .1215 955,945
USDHDs 11260 x 15055 x 4796 x 24 x 7 x 2 1.60× 10−8 45 .0175 .0765 138 .9946 .0664 3,513,665

TABLE II
ATTRIBUTE COUNTS AND SELECTED DAYS FOR DATASET SPLITS

Set User Source Destination Events Fail % Days
Train 11,260 15,055 4,796 194,841,640 1.82 1-56
Validation-Train 11,118 14,705 4,698 166,712,680 2.13 1-48
Validation-Test 9,181 10,778 3,508 28,013,171 12.68 49-56
Test 10,165 12,526 4,176 91,547,561 3.88 57-82

Unified Host and Network Dataset3 to address this critical need
[22]. The dataset contains host event and netflow logs collected
over a 90-day period at LANL, including red team activity
occurring from days 57 to 82. This red team activity provides
ground truth information for evaluation of anomaly detection
techniques. Attributes in the dataset are anonymized, but the
dataset curators took care to ensure the collection remained
meaningful for research.

While the LANL dataset contains both network and host
data, our work focuses on a subset of the host data. We base
our work on the 3.5 million daily average user authentication
events collected by the Windows Logging Service (WLS) at
endpoint devices in the LANL dataset. We filter the dataset
to include only EventID 4624 and 4625 which are collec-
tions of various types of successful and failed logon records.
In particular, we limit LogonType to Interactive, Network,
Batch, Service, Unlock, NewCredentials, RemoteInteractive,
and CachedInteractive4. We disregard events performed by
local and system processes (instances where the UserName
ends with “$”) to minimize the presence of automated ac-
tivity. We extract the following attributes from the remaining
authentication data, to be used as dimensions in our tensors:

• UserName, user which initiates the log-on.
• Source, device where the authentication originates.
• LogHost, destination device to be authenticated to.
• EventID, fail or success status of the authentication.
• Time, timestamp of the event.

Additionally, daylight savings time occurs at day 42 in the
LANL dataset, shown in Figure 1. As a result, we increment
hours by 1 after day 42 at 2:00 am to normalize the time.
Finally, we drop any data instances with missing values.

We split all extracted data instances by time into training,
test, validation-train, and validation-test sets. The attribute
sizes and day distributions for each split are shown in Table II.

3Dataset is available at https://csr.lanl.gov/data/2017/
4Detailed attribute descriptions can be found in [22].

A. Tensor Construction

We build three separate binary tensors with dimensions
User - Source - Destination - status (USDs), User - Source
- Destination - Hour - status (USDHs), and User - Source -
Destination - Hour - Day - status (USDHDs). The status indi-
cates failed or succeeded logon activity. The Day dimension is
day of the week (Monday through Sunday), and Hour is hour
of the day (0 through 23). User represents the account which
initiates the authentication event (e.g., UserName), Source and
Destination are the origin and target devices of the log-on
event (Source and LogHost, respectively, in our data). A tensor
entry of 1 indicates the presence of at least one event along the
specified dimensions. Table I shows statistics for each tensor.

Authentication events result in immensely sparse problems,
where only a small fraction of the large tensor is made up
of non-zero elements. Zero values that comprise the majority
of the tensor do not need to be stored in memory, allowing
us to deviate from dense tensor representation. Instead, sparse
tensors can be stored as list of coordinates and a corresponding
list of non-zero values.

We store coordinates of the non-zero values with element-
to-index mappings of the categorical dimensions. Entities that
do not exist in the training data are not mapped in the
corresponding test sets.

V. EXPERIMENTS AND RESULTS

We conduct experiments targeting two tasks: (1) detect-
ing anomalous events, and (2) detecting anomalous entities.
Anomalous events are analogous to single log messages, for
example, a single anomalous User, Source, Destination, Hour,
and Day combination. Anomalous entities are higher-level
abstractions, discovered by finding commonalities between
multiple anomalous events, for example a single malicious user
or a single malicious device.

Our model does not see any labels for malicious activity.
Following common practice in user behavior analysis, we
assume that the vast majority of activity during the training
period is benign, and observations during the training time
period are used to establish a baseline activity profile. Incident
response teams can use our model as a streaming detector,
where daily activities are scored against an existing model,
and a batch re-training procedure is undertaken on a recurring
basis to refine the model.

We quantitatively evaluate our detections using the area
under the receiver operating characteristic (ROC) curve (ROC-
AUC), which evaluates the extent to which the model assigns



Fig. 2. ROC curve for the authentication tensors with increasing dimension,
showing that increasing dimensions improves overall ranking of red team
events.

Fig. 3. Precision-recall plot for authentication tensors with increasing
dimension, highlighting the cost of higher false positive rates on red team
event detection.

lower p-values to red team events than benign events, and av-
erage precision (AP)5, which essentially measures the model’s
sensitivity to false positives.

A. Detecting Anomalous Events

We detect anomalous events by calculating a p-value for
each element in the observed tensor. Our experiments demon-
strate that our tensor factorization model can identify anoma-
lies across multiple modalities, and that adding dimensions to
the analysis improves the learning of detailed activity profiles.

Table I shows statistics for the p-values inferred across red
team and benign events. Red team events have substantially
lower average p-values than benign events, which shows that
our model discovers meaningful anomalies in an unsupervised
manner. As we add dimensions representing the hour of the
day and the day of the week to consideration, average p-
values decrease for red team events and increase for benign
events. Simultaneously, the standard deviation of the p-values
drops when the new dimensions are added to the tensor. This
result indicates that learning the temporal characteristics of
the connections jointly with the peer structure connecting
users and their devices enhances detectability. This time-
based anomaly detection is novel within a joint statistical
framework, and greatly enhances capabilities in applications
such as insider threat detection.

Previous work that applied non-negative matrix factorization
(NMF) detected anomalies using only two dimensions at a
time, such as a User-Destination pair [6]. 2-dimensional link
prediction methods cannot extract the multi-faceted details of
a user’s activity profile; for instance, detection of anomalies
via User-Destination dimensions alone will miss a malicious
activity if the only abnormal characteristic of the connection
is the Source of the authentication event. Using tensors, we
jointly learn activity profiles that include all dimensions of a
user’s behavior, and our experimental results show detection
improves, with minimal increase in the computational cost, for
tensors with up to 6 dimensions.

5Average precision is roughly the area under the precision-recall curve

TABLE III
ENTITY COUNTS FOR FUSION DIMENSION(S)

Target Dimensions Total Entities Red Team Entities
User 10,129 76
Source 12,519 1
Destination 4,167 93
User-Source 31,287 76
User-Destination 69,045 117
Source-Destination 70,533 93

Figure 2 shows that adding dimensions improves the rank-
ing of red team events within the full list of events observed
on the network. However, ROC curves for each tensor cannot
be compared directly due to the differing number of benign
events. Figure 3 shows that our detections are sensitive to
class imbalance. For example, with the p-value threshold of
0.001 the USDs tensor identifies 56 of the 119 anomalies while
falsely classifying 104 out of 125,285 events. With the same p-
value threshold, the USDHDs tensor can detect 108 of the 138
red team events while falsely classifying 3,483 out of nearly
3.5 million events. The insight that lower-dimensional tensors
yield better performance, when evaluated in terms of false
positives, leads us to develop our anomalous entity detection
method to reduce the workload for analysts.

B. Detecting Anomalous Entities

We detect anomalous entities by fusing p-values over tensor
dimensions to assign anomaly scores to one or more target
dimension(s). In our results, an entity can be a single physical
object in the network, such as a User, or a combination
of physical objects, such as a User-Source. Table III shows
the total number of entities. Fusing down to more than one
dimension allows us to compare our results directly to previous
performance benchmarks with matrix factorization.

Figure 4 shows ROC-AUC and AP scores for each tensor
when detecting anomalous entities via score fusion. ROC-AUC
scores indicate an improved ability to capture anomalous enti-
ties with the introduction of time-based dimensions. AP scores
reveal an increase in false positives with increasing dimension;



Fig. 4. ROC-AUC and AP scores for anomalous entity detection using tensors
with varying dimension. ”MRR” shows fusion ranked lists produced by all
other tensors.

we suspect this increase is due to added sensitivity to temporal
user characteristics. We obtain increased ROC-AUC and AP
scores by scoring ranked lists across all tensors, demonstrating
that each tensor actually captures complementary anomalies.

The previous benchmark for red team detection on the
LANL Unified Host and Network Dataset was established by
Sanna Passino et al. with AUC scores of 0.863 and 0.902 when
detecting red team events6 over the matrix with dimensions
User - Source and User - Destination, respectively [6]. Our
fusion AUC scores, at 0.957 for User - Source and 0.959
for User - Destination, demonstrating that jointly learning
user behavior patterns over multiple dimensions significantly
enhances anomaly detection performance.

VI. CONCLUSION

We introduce a multidimensional anomaly detection method
that is sensitive to anomalous activity over a diverse set of
attributes. We show that higher order representations enhance
detection of anomalies due to the ability of tensor factorization
techniques to extract more predictive activity profiles that
describe events simultaneously over multiple dimensions.

Combining information across multiple tensor factorizations
demonstrates state-of-the-art results for red team detection.
Our framework can be integrated with existing rule-based and
statistical intrusion detection systems where post-processing
can ease the workload on analysts. For instance, the devices
from an alert can be correlated with other weak indicators,
such as anomalous process start events [1]. Future work
includes augmenting our model to handle “cold starts” by
incorporating Sanna Passino’s covariate regression model [6].
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