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ABSTRACT

Title of thesis: Random Forest of Tensors
MASTER’S THESIS

Maksim E. Eren, Master of Science, 2022

Thesis directed by: Professor Charles Nicholas
Department of Computer Science and
Electrical Engineering

Tensor decomposition is a powerful unsupervised Machine Learning method

that enables the modeling of multi-dimensional data, including malware data. This

thesis introduces a novel ensemble semi-supervised classification algorithm, named

Random Forest of Tensors (RFoT), that utilizes tensor decomposition to extract the

complex and multi-faceted latent patterns from data. Our hybrid model leverages

the strength of multi-dimensional analysis combined with clustering to capture the

sample groupings in the latent components, whose combinations distinguish malware

and benign-ware. The patterns extracted from a malware data with tensor decom-

position depend upon the configuration of the tensor such as dimension, entry, and

rank selection. To capture the unique perspectives of different tensor configurations,

we employ the “wisdom of crowds” philosophy and make use of decisions made by

the majority of a randomly generated ensemble of tensors with varying dimensions,

entries, and ranks. We show the capabilities of RFoT when classifying Windows

Portable Executable (PE) malware and benign-ware.
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Chapter 1: Introduction

1.1 Motivation for Automated Malware Detection

Malware is a generic term for any unwanted software with a purpose of stealing

personal or confidential information, or causing harm to the system when deployed.

Recent cyber reports rank malware as one of the most costly and frequent cyber

threats [1]. In general, the yearly cost of malware to organizations is reported to be

$2.5 million [1], while the total cost of a single ransomware breach is nearly $4.62

million [2]. At the same time, the quantity of malware in the wild continues to

grow rapidly. Approximately 13.5 million new malware specimens and unwanted

applications are reported monthly, adding up to a total of nearly 1.3 billion known

malware specimens in 2022 [3]. This rapid increase in the quantity of malware is

accompanied with the growing sophistication and threat capabilities, making the

problem of defending against malware more challenging [4, 5]. The growing capa-

bilities, sophistication, cost, and the quantity of malware combined with the lack

of an experienced malware analyst workforce to respond to the immense number

of malware attacks drives the need to utilize automated defense systems based on

Machine Learning (ML) to combat malware. ML can enable early detection and re-

duce response times allowing automation to reduce the cost of a security breach by
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80% [2]. There are two categories of features used for ML-based malware detection,

each with its own advantages and disadvantages.

Dynamic malware analysis-based features are collected at run-time and often

include system calls, file system events, network, and process activity. In compar-

ison, static-malware-analysis-based features directly come from the contents of an

executable binary such as the Portable Executable (PE) header, strings, code, and

raw bytes. The static malware features can be collected from a specimen without a

need to execute the binary. Dynamic analysis-based features often provide a more

detailed picture of the malware behavior and are less prone to possible obfusca-

tions and packing techniques [6]. However, obtaining dynamic features has several

challenges. Dynamic features require executing the malware in a resource-expensive

isolated sandbox environment that often result in a slow feature collection process.

In addition, some malware is capable of detecting the presence of a sandbox and

modifying its behavior [7]. Despite the potential shortcomings, static malware fea-

tures are still an effective way to detect and characterize malware. We refer the

reader to [6] for more details on classical malware analysis. In this study, we focus

on static-malware-analysis-based features, specifically Windows PE header features,

to present an operationally relevant automated non-real time solution that can be

adopted by the blue-teams in an effort to combat malware. More specifically, our

proposed malware classification tool is based on tensor decomposition where the

malware data is modeled in a multi-dimensional space.
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1.2 Motivation on Using Tensor Decomposition for Malware Detec-

tion and Thesis Contributions

Tensor decomposition is a powerful unsupervised ML method that can extract

multi-faceted latent patterns from complex and large-scale data. Compared to the

classical ML methods, which are often black-box, tensor decomposition produces

interpretable results making it an effective tool for incident responders who need

to verify the alerts generated by automated incident detection systems (IDS). Due

to the fact that malware authors continuously generate new malware variants [8],

ML models used in malware identification need to be able to detect novel malware.

However, many of the popular ML models used in cyber defense are supervised

solutions that do not generalize well to new data. At the same time, supervised

ML models need a large quantity of labeled data to yield the desired performance

when deployed in production systems. This is problematic for the malware domain

because labeled malware data is expensive and time-consuming to obtain [8]. Semi-

supervised methods, including the algorithm that we propose in this thesis, can help

in the areas where the supervised methods fall short as they have the potential of

improved generalizability to new data, and the capability to yield good performance

with low quantity of labeled data. Despite the potential benefits of semi-supervised

solutions, the research community had not widely explored the application of semi-

supervised learning to Windows malware detection [8]. We address this gap in

malware research field, and introduce a semi-supervised algorithm based on tensor

3



decomposition to classify Windows malware.

Malware data is naturally multi-dimensional; therefore, we can construct a

multi-dimensional representation of a malware using tensors and analyze it via ten-

sor decomposition methods. In this work, we introduce an ensemble semi-supervised

classification algorithm, named Random Forest of Tensors (RFoT), that utilizes

the ability of tensor decomposition to extract meaningful patterns from multi-

dimensional malware data. We find that the malware and benign samples form

clusters within and among the latent components extracted with tensor decompo-

sition. We capture these groupings using clustering methods and perform semi-

supervised class voting for each unknown specimen grouped in a cluster using the

known samples from the same cluster. The noisy clusters are removed based on

a cluster uniformity threshold that is calculated using the known specimens. The

extracted latent patterns depend on the configuration of the tensor, including the

tensor dimension, entry, and rank selection. RFoT employs the “wisdom of crowds”

philosophy, and obtain the final class prediction with max-vote over the votes re-

ceived from each randomly generated ensemble of tensor configurations with varying

dimensions, entries, and ranks.

In this study, we investigate the malware classification performance of RFoT

using two tensor decomposition algorithms with distinct characteristics: CAN-

DECOMP/PARAFAC Alternating Least Squares (CP-ALS) [9–11], and CANDE-

COMP/PARAFAC Alternating Poisson Regression (CP-APR) [12] tensor decom-

position. We also compare Mean Shift (MS) [13–16] and Component clustering

algorithms that are utilized to capture the patterns from the latent factors. In our
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experiments, we use Windows Portable Executable (PE) file features of malware

and benign-ware from the EMBER-2018 dataset [17]. Specifically, we create 10

random subsets of size 10,000 PE files and apply our experiments in each random

subset to show that our results are statistically significant using 95% confidence in-

tervals. We baseline our method against the tuned XGBoost [18] and LightGBM [19]

models, which are used by the prior research to report high classification scores. We

also compare our results against SelfTrain extended XGBoost model which creates a

semi-supervised learner [20]. We show that our semi-supervised method outperforms

the state-of-the-art supervised models with an F1 score of 0.968 when classifying

malware, with a trade-off on reduced number of predicted labels due to the abstain-

ing predictions (i.e. predict “we do not know what class this is”). To the best of our

knowledge, we are first to formulate a tensor based semi-supervised classifier with

an ensemble learning framework to classify Windows malware.

1.3 Prior Publication Notice

RFoT was previously presented in the Malware Technical Exchange Meeting

(MTEM) 2021 poster session at the Sandia National Laboratories by Eren, Nicholas,

McDonald, and Hamer [21]. In this thesis, we get the chance to take a deeper

dive into understanding the capabilities of RFoT when classifying malware and

benign files. Specifically, we give a detailed description of our method, present

its performance with different hyper-parameter settings, and compare to several

baseline models.
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1.4 User-friendly Python Library for RFoT

To enable the reproducibility of our results and to provide an operationally-

relevant tool, we release RFoT on GitHub1. Our Python library follows the well-

known Scikit-learn like API to ease the usage of RFoT [16, 22]. RFoT Python

library also includes the Python implementation of the CP-ALS algorithm that was

originally released in MATLAB Tensor Toolbox [23,24]. For the CP-APR algorithm

which was also originally introduced in MATLAB Tensor Toolbox [23, 25], we use

the latest Python implementation of the CP-APR algorithm with GPU capability,

named pyCP APR, as a dependency in RFoT library [26]. Finally, to reduce the

computation time, the RFoT library utilizes embarrassingly parallel decomposition

of each random tensor member in the ensemble.

1.5 Thesis Outline

The remaining of the thesis is organized as follows: We provide a summary of

related work and recent advances in the ML-based malware analysis field, and the

use of tensors in cybersecurity problems in Section 2. Section 3 introduces our RFoT

approach by first providing an overview of the tensor notation. Then, we describe

how the clustering of malware and benign instances is performed using tensors, and

how cluster uniformity score is calculated. Finally, Section 3 describes the random

tensor ensemble approach before finalizing the discussion with the semi-supervised

formulation. We introduce the dataset and the evaluation metrics in Section 4.

1RFoT is available at https://github.com/MaksimEkin/RFoT
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Section 4 also include our RFoT hyper-parameter experiments before showcasing the

performance comparison with the baseline models. This section closes the discussion

with a case study for labeled malware data scarcity. Finally, before concluding, we

provide potential areas for future work in Section 5.
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Chapter 2: Related Work

2.1 Machine Learning Based Malware Classification

ML-based automated detection and characterization of malware has been a

long-lasting research area. The application of deep learning has shown to be an ef-

fective method to classify malware in a supervised manner. Vinayakumar et al. used

shallow neural networks to detect malware using PE header features [27]. Fabian et

al. also used neural networks, but designed their method to be used in environments

with limited compute resources [28]. Compared to these solutions that make use

of a selected set of static malware features, Raff et al. introduced a deep learning

architecture named MalConv to classify malware directly based on the entire raw

byte-sequences of the binary [7]. These methods used static malware analysis-based

features to classify malware. Although static malware features are an effective way

to identify malice in a file, dynamic malware features can provide additional details

about the executable. Vinayakumar et al. take a multi-modular approach using

Deep Neural Network (DNN) where the classification is performed using features

from static analysis, dynamic analysis, and gray-scale malware image [29].

Several other prior works also performed malware detection based on the im-

ages generated from malware [30–34], including work on classifying malware visu-
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alizations using an ensemble of random forests [35], and another work on a semi-

supervised approach to cluster gray-scale malware images [36]. Wang et al. also

used a semi-supervised approach using gray-scale malware images [37]. In their

work, byte n-grams translated into fixed-size gray-scale image vectors to be used

as a feature during training. Wang et al. perform classification with the gray-scale

image vectors using a 1-dimensional Convolutional Neural Network (CNN), a super-

vised deep learning method, that is strengthened using a semi-supervised Generative

Adversarial Network (SGAN).

Prior work had also looked at classical ML methods to classify malware. Ku-

mar et al. showed that XGBoost is an effective model to classify Windows PE

malware, after performing low-resource feature selection [38]. Pham et al. also used

the EMBER-2018 dataset and showed that the statistical summaries of the original

PE features can yield improved detection results using LightGBM which outper-

forms previously introduced deep learning solution MalConv while requiring fewer

resources [39].

The majority of the aforementioned work, which reported excellent malware

detection capabilities, is based on supervised learning. However, supervised models

often face performance degradation in production when faced with specimens that

do not follow the same distribution the model saw during the training time. Qi

et al. addressed this problem by integrating unsupervised domain adaptation tech-

nique based on adversarial learning into LightGBM for static malware detection [40].

Their approach extends LightGBM to learn domain-invariant features by using the

predictions made from each decision tree in the model as a feature space which are

9



then used as an input into the adversarial learning framework.

Another domain that has received a growing interest is the application of en-

semble learning to enhance the predictive capabilities of malware classifiers. To this

end, several prior research looked into an ensemble approach for Windows malware

classification using static features. Atluri showed that several tree-based ensemble

models including Random Forests, Bagging Decision Tree Classifier, and Gradient

Boosting Classifier among others can be combined into a Voting Ensemble Classifier

(VEC) to achieve an improved detection of Windows PE malware [41]. A similar

method was explored by Ramadhan et al. who created a voting-based ensemble

model using LightGBM, XGBoost, and Logistic Regression [42]. Ramadhan et al.

showed that the ensemble of classifiers, each with its own inductive biases, can yield

increased accuracy compared to any individual model alone since each member of

the ensemble complements others’ weaknesses. Ensemble learning framework had

also been applied to the deep learning field for malware detection by Dahl et al. [43].

Authors showed an ensemble of neural networks with voting, alongside a novel fea-

ture selection method based on dimensionality reduction and random projections,

can improve the identification of malware.

While the above prior work for ensemble learning used the voting method,

Azeez et al. took a stacking approach with an ensemble of CNNs to form a derived

dataset based on the decisions of the base models, which are then used as input to

the final prediction layer with ExtraTrees classifier to improve the prediction accu-

racy [44]. Gupta et al. also took a stacking approach with an ensemble of diverse

supervised classifiers [45]. Conversely, Gupta et al. carefully selected the best per-
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forming classifiers in the ensemble by first ranking them based on their performance.

The best-ranking base models are then used within the stacking ensemble layer to

further improve the malware detection capability.

Clustering has also been applied in the framework of ensemble learning to

identify malware. Ye et al. introduced a hybrid framework that builds base clusters

from an ensemble of clustering algorithms applied separately to TF-IDF build from

instruction frequency and instruction n-grams [46]. The introduced method utilizes

an ensemble of clustering algorithms with distinct characteristics such as hierarchical

clustering and weighted subspace K-medoids to build the base clusters, which are

then used to extract the signatures that distinguish malware families. A similar

framework, based on an ensemble of hybrid clustering algorithms, had also been

proposed by Zhang et al. [47].

Similar to the clustering ensembles, distance metrics had also been used with

an ensemble learning structure. Kong et al. use similarity metrics between each

pair of malware to label malware families [48]. To obtain the similarity measure-

ments, authors use a set of distinct features such as opcodes, system calls, and file

system activity. The set of new distance-based feature vectors, each from a different

malware feature, are then used to train an ensemble of classical ML models. The

similarity-based approach had also been used by Raff et al. previously, where they

introduced the Burrows Wheeler Markov Distance (BWMD), an efficient similarity

metric, based on embedding the data to a fixed size vector space, and showed its

capabilities when clustering malware [49].

Motivated by the advances and success in prior work for ensemble learning

11



and clustering, in our framework, we adopt ensemble learning and clustering to

multi-dimensional analysis via tensor decomposition. In addition, motivated by the

potential benefits, we formulate our tensor decomposition-based solution in a semi-

supervised methodology. The most similar work to ours, regarding semi-supervised

learning, was by Irofti et al. who proposed a semi-supervised solution using Dictio-

nary Learning (DL) to classify Windows PE malware [50]. The proposed framework

first trains a dictionary in a supervised fashion, which classifies intermittent new

malware, and thereby updates the dictionary with new malware signals in an online

unsupervised fashion. DL, which is very similar to matrix factorization, is limited

by the information conveyed in a two-dimensional space. Using tensors, we model

the data in a higher-dimensional space where each dimension enable inclusion of

more details about the nature of the data which leads to extraction of complex

and polyperspective information. Due to the complex insights that can be gained

from the data using multi-dimensional analysis, recent work had utilized tensors in

addressing cybersecurity problems.

2.2 Tensor Decomposition and Cybersecurity

Data relevant to cybersecurity problems are often naturally multi-dimensional

making tensors an ideal tool for analyzing cyber data. Several prior works had used

tensor decomposition to tackle cybersecurity problems in an unsupervised fashion.

CANDECOMP/PARAFAC Decomposition (CPD) decomposition had been a popu-

lar tool to identify several types of outliers, or anomalies in cyber data [51,52]. Bruns
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et al. applied non-negative tensor decompositions, specifically CP-APR algorithm,

to identify malicious network activity patterns [53]. The authors utilized the inter-

pretability of the tensor decomposition results, visually analyzed the latent factors,

and identified each stage of a cyber breach such as reconnaissance, brute-forcing,

data exfiltration, and insider threat. Later, CP-APR with a statistical framework

was shown to be an effective method to improve automatic anomaly detection capa-

bilities such as identification of users with compromised credentials, botnet network

traffic, spam e-mails, and fraudulent credit card transactions [54,55]. CP-APR had

also been used to detect cyber anomalies utilizing High Performance Computing

(HPC) resources to perform embarrassingly parallel graph analytics in the latent

components [56].

Tucker tensor decomposition had also been a popular algorithm to tackle cy-

bersecurity problems. Kanehara et al. used non-negative Tucker tensor decomposi-

tion with thresholding over the latent factors to perform real-time botnet detection

on the darknet [57]. Similarly, Tork et al. also used Tucker tensor decomposition

on a 3-dimensional tensor to identify telecommunication anomalies [58]. Xie et al.

proposed a tensor truncating algorithm for fast low-rank Tucker decomposition of

tensors, and used reconstruction error as a metric to detect network anomalies [59].

Sun et al. addressed the network anomaly detection problem with a dynamic Tucker

tensor decomposition approach to handling large-scale streaming data [60].

In the classical ML field, ensemble learning has shown to be an effective way to

improve the capabilities of any individual model alone. Motivated by this fact, there

has been an increasing amount of work in the tensor domain that explored ensemble
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learning. The ensemble learning approach in multi-dimensional space was first used

by Kisil et al. [61]. In their work, an ensemble of latent factors extracted via tensor

decomposition was used to train classical ML models to combine the underlying

hypothesis from each tensor decomposition and ML model. Similarly, Hou et al.

introduced a framework that utilizes tensor decomposition with an ensemble setting

to classify Android malware [62]. The authors used the application permissions, API

calls, and hardware specifications as features to build the tensor. This tensor is then

decomposed with Tensor Filter in a recursive boosting approach to build an ensemble

of base models. Hou et al. showed that the ensemble approach, combined with tensor

decomposition, significantly improves malware detection capabilities compared to

the baseline classical ensemble models. In our previous work, we have also used an

ensemble approach and showed that an ensemble of tensors with different ranks can

enhance anomaly detection capabilities using statistical p-value fusion techniques

[55].

The results produced by the aforementioned prior work heavily rely on the

selection of the tensor rank, dimensions, and entry. Building an adequate tensor

that would produce good results when decomposed is not a trivial task for several

reasons. First, finding the rank of a tensor is NP-hard [11]. At the same time,

although it is possible to easily build a tensor that would have an intuitive mean-

ing, selecting the best features for the tensor dimensions and entry could require

exhaustive study. This process often involves trial and error where different com-

binations of features are tested. For instance, several prior works used source IP,

destination IP, and temporal information as the tensor dimensions for network traf-
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fic data (Netflow). However, there are many other possible features in Netflow data

such as bytes transferred, number of packets, source and destination port number,

and connection length among others. Meanwhile, we may choose to have the tensor

entry to be binary values, counts, or another Netflow feature. Therefore, selecting

optimal combinations of features to define a given tensor’s dimension and entry from

numerous options is an exponential scale problem.

In our proposed methodology introduced in the next chapter, we believe that

the ensemble of randomized tensor configurations removes the need to find any

single tensor with optimal dimensions and entry. Before introducing our framework,

we begin the next chapter by summarizing the tensor notation as a preliminary

information.
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Chapter 3: RFoT Methodology

3.1 Tensor Decomposition Notation

Tensor decomposition is a powerful data analysis method that can extract

complex patterns from data in an unsupervised manner. Using tensors, the data

can be represented in a multi-dimensional space where the natural relations among

each dimension is explored simultaneously. This higher-dimensional and more com-

plex representation enable understanding, discovery, and interpretation of hidden

polyperspective information from data. This section is dedicated to summarize the

tensor notations that will become handy when introducing RFoT later in the thesis.

We also briefly describe the tensor decomposition algorithms used in RFoT at the

end of the section. Summary of the notations used in this thesis is provided in Table

3.1.

Table 3.1: Summary of the notation styles used in the thesis.
Notation Description

x Scalar
x Vector
X Matrix
XXX Tensor
xi ith element in the vector
Xi,j Entry located on row i and column j
Xi: ith row
X:j jth column

XXX(i) Superscript (i) used to identify the ith random tensor
XXX::j jth slice of a tensor
◦ Outer product
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Tensors are a higher-order extension of matrices that enable multi-dimensional

data representation. A first-order tensor is a vector, an order-2 tensor is called

a matrix, and anything with 3 through D dimensions is called a tensor. A D-

dimensional tensor is called an order-D tensor, and each dimension is also named

the mode of the tensor. For instance, the 1st dimension of a tensor is also called

the first mode of the tensor. To build up to an example of how a tensor can be

constructed, we can first look at matrices. In a lower-dimensional space, we can

represent a bag of words from a set of scientific papers in a matrixX with dimensions

Documents - Words and shape NDocuments × NWords. In this matrix, an entry Xi,j

is the number of times document i used word j. Using tensors, we can create a

higher-dimensional representation of the data. Take the example of the scientific

paper again with additional information of publication time for each paper. We can

represent this data in an order-3 tensor XXX with dimensions Documents - Words -

Time and shape NDocuments×NWords×NT ime. An entry XXXi,j,k represents the number

of times document i used word j at time k (year for instance).

We can generalize this example from a 3-dimensional tensor to aD dimensional

tensor XXX ∈ IRN1 xN2x ···xND such that an entry in the tensor is denoted with XXXi1,i2,··· ,iD

where the indexing ranges of each mode are i1, i2, · · · , iD ∈ [0 ≤ i1 < N1, 0 ≤ i2 <

N2, · · · , 0 ≤ iD < ND]. We borrow the multi-index notation, and use i to denote

indexing of D modes such that i = i1, i2, · · · , iD and XXXi is the tensor entry [12, 63].

Let nnz(XXX) be the set of all non-zero entries in the tensorXXX, and let Ω be the set of all

entries including the zeros such that we have a sparse tensor when nnz(XXX) < |Ω| [12].

Here |Ω| is the size of the tensor which is calculated as follows:
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|Ω| =
D∏

d=1

Nd (3.1)

We can use the number of non-zeros and the size of the tensor XXX to calculate

the sparsity of the tensor as follows:

η =
nnz(XXX)

|Ω|
(3.2)

Tensors built from cyber data are often extremely sparse and large. For in-

stance, tensors build for cyber Netflow can have a sparsity as low as η = 10−8 [54].

In the Netflow example, the dimensions of the tensor can represent the source and

destination device, and the time of the event for network communication. Since

many of the devices in a network communicate with a small fraction of the other

devices in the same network, the tensors build from Netflow data are often sparse.

Similarly, different malware features (such as file size, number of sections, and times-

tamp) can represent each dimension of the tensor. Each specimen’s corresponding

feature space will map to a single index along each dimension in the given tensor,

similar to the Netflow example, resulting in the tensor being sparse. We can use the

sparsity of the tensors to our advantage and avoid storing the entire tensor in the

memory, which is often not possible due to the large size of the tensor. To this end,

we instead store the tensor as a list of non-zero coordinates and the corresponding

list of non-zero values, which is called the Coordinate (COO) format. In COO for-

mat, each coordinate denotes the indexing i, and each non-zero value is the entry
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XXXi.

Figure 3.1: Illustration of CPD on a 3-dimensional tensor

The higher-order representation of the data using tensors enables analysis of

the information hidden in the data while considering the interactions simultaneously

across each dimension allowing extraction of complex and multi-faceted details. The

two popular tensor decomposition algorithms used to factorize tensors are Tucker

and CANDECOMP/PARAFAC Tensor Decomposition (CPD) [11]. In this thesis,

we use CPD to extract the latent patterns from malware data. CPD compresses

the D-dimensional tensor XXX into lower-dimensional R rank-1 tensors, also called the

components, such that the sum of the R rank-1 tensors approximates the original

tensor:

XXX ≈
R∑

r=1

λr · a(1)
r ◦ a(2)

r ◦ · · · ◦ a(D)
r (3.3)

Here ◦ represents the outer product. Latent factors a
(d)
r for each dimension

d, where 1 ≤ d ≤ D and rth component where 1 ≤ r ≤ R, describe the latent

information for the given dimension. Each a
(d)
r normalized to sum up to 1, and

weight is absorbed by each λr. We also provide an illustration of CPD in Figure 3.1
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for a 3-dimensional tensor. The tensor rank R is a hyper-parameter which is chosen

by the user. Finding the rank R of a tensor is known to be NP-Hard [11]. We can

write CPD in a shorter format with the KRUSKAL notation as follows:

XXX ≈MMM ≡ Jλ ; A(1),A(2), · · · ,A(D)K (3.4)

Here the KRUSKAL tensor MMM is the low-rank approximation of XXX. Each

A(d) is a matrix of latent factors for dimension d. A(d)
:r is the rth latent factor for

dimension d with size Nd such that we can write A(d) as follows:

A(d) = [a
(d)
1 , a

(d)
2 , . . . , a

(d)
R ] (3.5)

Within each latent factor matrix MMM::d−1 = A(d), for dimension d, we can

have linearly dependent columns A(d)
:r , for each r [11]. However, when all la-

tent factor matrices A(1,2,··· ,D) considered together, CPD solutions is almost always

unique [11, 64]. The uniqueness of the CPD enable each component to represent

distinct events/characteristics of the data. Therefore, the results of CPD gives us

interpretable results when we look at each component individually.

In this thesis, we use two popular tensor decomposition algorithms with dif-

ferent properties to heuristically test the malware classification capability of RFoT.

The first one is the CANDECOMP/PARAFAC Alternating Least Squares (CP-

ALS) tensor decomposition algorithm [9–11]. To fit the tensor XXX, CP-ALS performs

updates, using least squares, by alternating between each latent factor matrix A(d),

while fixing the remaining of the A(d−1) factor matrices until convergence to solve
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the following optimization function:

min
A(d)

||XXX−MMM||2 (3.6)

The second tensor decomposition algorithm used in our studies is CANDE-

COMP/PARAFAC Alternating Poisson Regression (CP-APR), a non-negative ten-

sor decomposition method, which minimizes Kullback-Leibler (KL) divergence via

an updated Multiplicative Update (MU) algorithm [12]. The CP-APR algorithm

includes a non-negativity constraint which allows the latent factors to be additive

parts of the original data resulting in an improved interpretability. In CP-APR,

tensor is modeled under Poisson distribution with the Poisson rate parameter γ > 0

such that:

XXXi ∼ Poisson(γi) (3.7)

CP-ALS algorithm was first released in the popular tensor decomposition soft-

ware named MATLAB Tensor Toolbox [23]. With RFoT, we introduce a Python

implementation of CP-ALS, which is used during our experiments. For the CP-APR

algorithm, we use the previously introduced Python implementation with GPU ca-

pability [26]. For more information on tensors, we refer the reader to [11,65]. More

details of the CP-APR algorithm can be found in [12], and details of CP-ALS can

be found in [9].
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3.2 Clustering Specimens Over the Latent Components

We find that malware and benign-ware samples can be separated in an unsu-

pervised manner using tensor decomposition. In this section, we first describe the

tensor configuration needed to obtain sample groupings from a tensor decomposi-

tion. We also show real examples of malware and benign-ware clusters in the latent

factors. We then summarize the clustering methods used in RFoT to capture the

patterns formed in the latent factors.

3.2.1 Malware Patterns in the Latent Factors

Sample
0.000
0.001
0.002
0.003
0.004
0.005
0.006

Benign Malware

Figure 3.2: Clean malware and benign-ware clusters found by tensor decomposition

Sample
0.0020
0.0015
0.0010
0.0005
0.0000
0.0005
0.0010

Benign Malware

Figure 3.3: Clean malware clusters and noisy benign-ware clusters found by tensor
decomposition

In order to extract latent factors with the capability of describing malware and
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benign-ware patterns based on each sample individually, we set our first dimension

of the tensor XXX to represent each malware sample while selecting the remaining

of the D − 1 dimensions and the tensor entry from static-malware-analysis based

features using the PE header. We give a detailed description of how the remaining

D−1 is configured to build the tensor from PE features in Section 3.3. In this tensor

configuration, the shape of XXX is N1 ×N2 × · · · ×ND, where N1 is the total number

of malware and benign-ware files from our dataset. For example, to access the

tensor entry of the first specimen from the dataset, for features that are indexing at

i2, · · · , iD, we would index the tensor as XXX0,i2,··· ,iD . Because the first dimension of XXX

represents the samples, the obtained latent factor matrix for mode-1 isMMM::0 = A(1) ∈

IRN1 xR, where R is the tensor rank and A(1) carries latent information regarding the

samples in our data. Using A(1), we can access each individual latent factor A(1)
:r ∈

IRN1 x 1 in which the N1 malware and benign-ware samples would form clusters. In

Figure 3.2, we provide an example latent factor A(1)
:r obtained by factorizing N1 =

10, 000 malware and benign-ware from the EMBER-2018 dataset using CP-ALS.

Here, we can see that CP-ALS was able to cleanly separate malware and benign-ware

instances within the latent factor. We also provide a second example with more noisy

clusters in Figure 3.3. In Figure 3.3, around 7 lines forming clusters can be seen.

Although the lines that have the majority of the samples from the malware class

form cleaner clusters, there are other clusters where benign and malware samples are

included within the same cluster. In Section 3.4.2, we will describe how we handle

the more noisy clusters, or the clusters with poor uniformity where the majority of

the cluster is not represented by a single class, using the Cluster Uniformity Score.
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Sample
0.01

0.00

0.01

0.02

0.03

Benign Malware

Figure 3.4: Tensor decomposition placing benign samples into a single latent factor

Sample
0.006208

0.006210

0.006212

0.006214

0.006216

0.006218

Benign Malware

Figure 3.5: Tensor decomposition placing malware specimens into a single latent
factor

In addition to observing clusters that separate malware and benign-ware within

each latent factor A(1)
:r , we also find that malware and benign instances are cluster

among components in A(1), such that a single component r represents samples from

a single class. For instance, in Figure 3.4 we again show a latent factor obtained by

factorizing N1 = 10, 000 malware and benign-ware from the EMBER-2018 dataset

using CP-ALS. This time, it can be seen that CP-ALS was able to cluster benign

instances within a single factor from the component r. Similarly, in Figure 3.5, it

can be seen that the latent factor r only contains malware specimens. Motivated

by the fact that we can acquire meaningful patterns that distinguish malware and

benign-ware using tensor decomposition, we next look at how these patterns can be

captured to derive a functionality that enable building a semi-supervised classifier.
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3.2.2 Capturing the Latent Patterns via Clustering

The performance of the RFoT depends on the success in capturing the patterns

found by tensor decomposition into clusters. Therefore, in this thesis, we compare

two different clustering methods. The first clustering algorithm we use to capture

the patterns is called Mean Shift (MS) [13–15]. Specifically, we use the Scikit-learn

implementation of this algorithm [16]. MS uses centroids to be the mean of clusters

and updates the location of the clusters in a hill-climbing fashion to locate the

maxima of a given density function, making it a good fit to perform clustering in a

1-dimensional space [16]. The window length, or the furthest point from the centroid

of a cluster, is selected via the bandwidth. We use Scikit-learn’s estimate bandwith1

API to automatically determine the number of clusters. RFoT applies MS to each

component within the latent factor for the first dimension A(1)
:r from a given tensor

decomposition. We extract total of Gr clusters from each latent factor A(1)
:r , adding

up to total of G = G0 +G1 + · · ·+GR−1 clusters for a single tensor decomposition.

We let the gj,r represent a cluster with a set of samples from the rth component

and jth cluster, where 0 ≤ j ≤ Gr − 1.

In addition to the MS clustering, we introduce the Component clustering in

this thesis. The motivation behind the Component clustering comes from our ob-

servation that we can obtain class based groupings among components, rather than

within individual latent factor, obtained from tensor decompositon. We discussed

this in Section 3.2, where figures 3.4 (component with only benign samples) and

1We heuristically set the quantile hyper-parameter to be 0.1 for estimating the bandwidth.
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3.5 (component with only malware specimens) showed an example of clean clus-

tering within a single latent factor from the component r. Formally, when using

the Component clustering, we will let each A(1)
:r to define a single cluster such that

gr,r = A(1)
:r . The total number of clusters from the component r in this case is

Gr = 1, and the total number of clusters for the decomposition is G = R, where

R is the tensor rank. Recall that figures 3.2 and 3.3 showed example latent factors

where we had mix of both malware and benign-ware clusters. We will also use the

Cluster Uniformity Score, introduced below at Section 3.4.2, to filter out the cases

where we have more than one class describing a single latent factor.

After each tensor decomposition, we apply pre-procesing to each latent factor

A(1)
:r to keep the samples with signals, or samples with a value that is not near 0

within the latent factor. To this end, prior to applying MS or Component clustering,

we mask out (or remove) the points that are close to zero, where the distance to 0

is controlled with the hyper-paremeter zero tol in RFoT. In our experiments, we set

zero tol = 1e− 08.

3.3 Ensemble of Random Tensor Configurations

3.3.1 Notation for an Ensemble of Tensors

Patterns extracted with tensor decomposition depends on the configuration of

the tensor including the selection of the dimensions, tensor entry, and tensor rank.

RFoT uses the “wisdom of crowds” philosophy by utilizing the patterns found from

an ensemble of tensor configurations with randomly selected dimensions, entries,
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and ranks. We use the variable n estimators to represent the number of randomly

generated tensor configurations. Let XXX(i) be one of the randomly generated tensors

where i is in range 1 ≤ i ≤ n estimators . To describe the random tensor configura-

tion members of an ensemble, we re-formulate the notations introduced for tensor

decomposition in Section 3.1. We begin with re-writing the CPD formula with sum

of rank-1 tensors:

XXX(i) ≈
Ri∑
r=1

λr · a(i,1)
r ◦ a(i,2)

r ◦ · · · ◦ a(i,Di)
r (3.8)

Here we have the rank Ri CPD for the ith random tensor XXX(i) with Di dimen-

sions, and each a
(i,d)
r represents the rth latent factor for dimension d, where r is in

range 1 ≤ r ≤ Ri and d is in range of 1 ≤ d ≤ Di. Following the KRUSKAL format

we re-write the low-rank approximation as follows:

XXX(i) ≈MMM(i) ≡ Jλ ; A(i,1),A(i,2), · · · ,A(i,Di)K (3.9)

Here MMM(i) is the low-rank estimation for the ith random tensor, and MMM
(i)
::d−1 =

A(i,d) is the latent factors matrix for dimension d. Each A(i,d) ∈ IRNd xRi is a collec-

tion of latent factors as follows:

A(i,d) = [a
(i,d)
1 , a

(i,d)
2 , . . . , a

(i,d)
Ri

] (3.10)

As explained in Section 3.2.1, to capture the sample groupings, RFoT fixes the

first dimension to represent each sample from our dataset. In an ensemble of random
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tensor configurations setting, MMM
(i)
::0 = A(i,1) ∈ IRN1 xRi is the latent factors matrix

for the first dimension representing the N1 malware and benign instances for the

ith random tensor. MS clustering is applied to each A(i,1)
:r = a

(i,1)
r , to capture G

(i)
r

number of clusters from component r, such that the total number of clusters found

from ith tensor is G(i) = G
(i)
0 +G

(i)
1 + · · ·+G

(i)
Ri−1. In an ensemble notation, we will

let each cluster with a set of samples to be denoted with g
(i)
j,r, where 0 ≤ j ≤ G

(i)
r ,

for the rth component of ith tensor decomposition. With Component clustering,

each cluster is g
(i)
r,r = A(i,1)

:r , and the total number of clusters G(i) = Ri for the ith

tensor decomposed to rank Ri.

3.3.2 Random Tensor Configuration Sampling

Our random tensor sampling includes a random selection of the number of

dimensions, the features to represent each dimension, tensor entry, and random or

fixed tensor rank. For each i random tensor, we first randomly choose the number

of dimensions Di with replacement, such that the range of Di is 3 ≤ Di ≤ β − 1,

where β is the total number of features from the original matrix X ∈ IRN1 xβ.

The minimum and maximum number of dimensions a random tensor configura-

tion can have is controlled using the RFoT hyper-parameters (min dimensions,

max dimensions). Here min dimensions >= 3 since tensors have at least 3 di-

mensions, and max dimensions <= β since we need one of the features to be the

tensor entry. The first dimension is size N1 representing each malware and benign-

ware sample, and the features representing the remaining Di − 1 dimensions are
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randomly selected from β features without replacement. Next, from the remaining

β −Di features, which represent the feature(s) that are not selected to be a tensor

dimension, RFoT randomly selects the feature to be used as the tensor entry with

replacement. Finally, rank Ri is selected randomly, also with replacement, or each

random tensor is assigned a user-defined fixed rank Ri = rank .

Tensor rank determines the number of hidden features, or latent components,

that the tensor decomposition should extract. If we choose the rank to be too low,

then we miss vital information (under-fitting), while if the rank is chosen to be too

high, then we include noise in our solution (over-fitting) [66]. If we under-fit or

over-fit the solution, then the latent factors might not have meaningful patterns to

cluster benign and malware instances. By randomly selecting the rank, we attempt

to avoid the need to correctly determine the rank of the tensor. Using the philosophy

“wisdom of crowds”, we hope that an ensemble of tensor decomposition collectively

can reach to a consensus in the extracted patterns and allow precise malware detec-

tion. By doing so, we let the ensemble members, random tensors, to complement

each others’ weaknesses. Specifically, we want to cancel out the impact of the cases

where we obtain poor tensor decomposition results by deriving a decision based on

the majority of the population. This hypothesis assumes that the cases with impure

clusters does not represent the majority of the population.

As we sample each random tensor configuration, we do not check if the same

configuration was already used. This check is avoided to ensure that the random

sampling process remains fast as the size of the ensemble grows. Therefore, the

aforementioned 4 steps for sampling random tensor configurations for building the
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ensemble of n estimators tensors can result in repeated tensor configurations, which

would need to be discarded after the sampling. Inspired from the previously intro-

duced technique for fast sampling of zero tensor indices [63], we over-sample the

tensor configurations to lower the probability of the repeated tensor configurations.

Therefore, we set the ensemble size to be n estimators+(n estimators ·0.1) random

tensors. We then perform post-processing to keep the unique tensor configurations

and under-sample the ensemble to be the size of at most n estimators.

3.3.3 Feature to Tensor Dimension Mapping and Tensor Entry

Feature
Vector 5 19 42 20 21 3 11 5 18 21 13 2 43

2.9-10.8 10.8-18.6 18.6-26.4 26.4-34.2 34.2-42Bins Ranges 

0 1 2 3 4
5 Bin Indices 

Making the Tensor Dimension 

Figure 3.6: Example of 4 numerical feature values being mapped to 5 bins to form
a tensor dimension.

Categorical features can easily be mapped to an index in the tensor dimension.

For example, take the EMBER-2018 feature has signature, a binary feature that can

be a 0 or 1. If a tensor dimension represents this feature, the size of that dimension

would be 2, where has signature = 0 would map to index 0, and has signature = 1

would map to index 1. This generalizes to any categorical feature where the labels

can be encoded to retrieve features to dimension index mapping.
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On the other hand, in order to use a numerical feature as a tensor dimension

we need to utilize binning to map the given numerical value to a certain index in the

dimension. RFoT uses cut API of Pandas Python library to bin numerical values

[67,68]. The number of bins, or dimension sizeNd, is determined by the RFoT hyper-

parameter bin scale, where the number of bins is Nd = bin scale · num unique(f).

Here num unique(f) gives the total number of unique elements present in a given

feature vector f , which is one of β features. We provide an example in Figure

3.6 which shows how numerical features are mapped to 5 bins to from a tensor

dimension.

We can utilize a real example to further explain how a tensor for malware data

can be build using numerical feature binning and categorical feature mapping. For

example, let ith random tensorXXX(i) have the dimensions Sample - Number of Strings

- Has Signature, and entry Number of Sections. Sample dimension represents each

N1 malware and benign-ware sample. The dimension Number of Strings represents

the number of printable strings present in a given malware or benign instance, with

size N2 = bin scale · num unique(f), such that the EMBER-2018 features for the

number of strings will map to an index between 0 and N2 − 1. The categorical

dimension Has Signature identifies if a given specimen has a signature or not, thus

the size of the last dimension is N3 = 2. Finally, the tensor entry Number of

Sections determines the number of sections present in the PE header of a given file.

An entry XXX
(i)
n,s,f in this tensor represents the number sections that a specimen n ∈

[0, 1, · · · , N1−1], with number of strings that bins to an index s ∈ [0, 1, · · · , N2−1],

and with the signature flag f ∈ [0, 1] has.
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3.4 Semi-supervised Classification with RFoT

Tensor decomposition extracts latent patterns from multi-dimensional data in

an unsupervised fashion, and we capture these patterns for malware and benign

samples using clustering techniques as described in Section 3.2. Using the captured

clusters, we formulate a semi-supervised classifier that utilizes the information found

by tensor decomposition. In this section, we first describe how the semi-supervised

voting over the clusters is performed. This include the cases where the model is

unable to make a decision for a given sample, and thus abstaining vote is given. We

then introduce the Cluster Uniformity Score that is used as a threshold to filter out

noisy, or non-uniform clusters.

3.4.1 Semi-supervised Voting Using the Clusters

Case 1 
Vote Benign-ware

Case 2 
No Unknown Samples

Case 3 
Vote Malware

Case 4 
No Unknown Samples

Case 5 
No Known Samples

Case 6 
Poor Cluster Purity
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Case 7 
No Unknown Samples

Figure 3.7: Possible cases of clusters that can be seen
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RFoT takes a dataset X ∈ IRn xβ, where n is the number of samples and

β is the number of features, and a vector y that represents the labels for each n

samples such that yn ∈ [−1, 0, 1, · · · , C − 1]. Note that −1 is used for the unknown

specimens, and C is the number of classes. In this thesis, we have C = 2 for

malware and benign-ware, such that yn ∈ [−1, 0, 1] where 0 labels the benign-ware

and 1 labels the malware. When we obtain a cluster, we use the known samples

(samples with labels) as a reference to help us make a decision against the unknown

samples (samples without the labels, or −1) within that cluster. Specifically, the

class vote of the given unknown samples that are in the cluster g
(i)
j,r is determined

by the majority class of the known samples that are in the same cluster g
(i)
j,r. There

are 7 possible cases of cluster characteristics that we can obtain from the latent

components, which are shown in Figure 3.7. In Case 1, we may have a cluster

containing a set of unknown specimens and a set of known benign-ware. In this

case, we would vote the unknown specimens as benign file. Similarly, we can vote

the unknown specimens as malware if the majority of the known specimens are

malware in the same cluster, as shown in Case 3. It is also possible to come across

with clusters where no unknown specimens are present, as shown in Case 2, Case

4, and Case 7. If there are no unknown samples in a given cluster, we disregard

the cluster since we do not need to perform any voting.

This semi-supervised setup for classifying unknown specimens via clustering

allows us to perform abstaining predictions (i.e. predict “I do not know”) due to

not being able to obtain a class vote for a given sample. For instance, if a cluster

consisting of only a set of unknown specimens, as shown in Case 5, we cannot take
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a vote for these samples since we do now have any labeled instances to inform us

regarding the class vote. We also cannot take a vote for the samples that are masked

out due to the lack of signals (samples that are close to 0 with a certain threshold), as

described in Section 3.2.2, since these instances would not be used in clustering. If a

given sample always falls in a cluster without any known samples, like in Case 5, for

each random tensor XXX(i) and its latent factor for the first dimension A(i,1) obtained

by the decomposition, then this sample is predicted to be abstaining, or its label

is kept as unknown (−1). Similarly, if a given sample n is consistently masked out

due to being near zero in each A(i,1), then it is predicted to be abstaining.

The samples that do get class vote(s), we perform max-vote to determine the

final class prediction. That is, if a given specimen n has its majority of the votes

(over 50%) representing one of the C classes, the instance n is predicted to be that

class.

3.4.2 Cluster Uniformity Score

It is possible to encounter a cluster that is not uniform in representing a single

class (cluster have known instances from multiple classes). We have already shown

an example of a latent factor with non-uniform clusters in Figure 3.3, where noisy

clusters occur. In Figure 3.7, Case 6 demonstrates a cluster where we have a mix

of known malware and benign-ware specimens. In such cases, we cannot obtain

an accurate class vote from the cluster. To filter out these clusters, we use the

Cluster Uniformity Score which is calculated based on the fraction of the most
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dominant known class in the given cluster g
(i)
j,r. We have previously introduced

cluster uniformity score in our prior work, that is under review at ACM TOPS

journal, for determining the uniformity of the clusters based on known specimens

[69]. In this thesis, we utilize the same metric, but re-formulate it to match with

ensemble of tensors notation as follows:

Ug
(i)
j,r =

|max (g
(i)
j,r

known
)|

|g(i)
j,r

known
|

(3.11)

Here Ug
(i)
j,r is the cluster uniformity score for jth cluster obtained from rth

component of tensor decomposition of ith tensor, g
(i)
j,r. |max(g

(i)
j,r

known
)| is the number

of samples that belongs to the most dominant class with known samples in the

cluster g
(i)
j,r, while |g(i)

j,r

known
| is the total number of known samples in the cluster.

The clusters where Ug
(i)
j,r is below the specified uniformity threshold t are removed

from consideration, and thus no class vote is obtained from these clusters. If a given

specimen n continuously falls in the clusters that are removed due to poor purity,

it is also predicted to be abstaining at the end.

3.5 Putting it Together: RFoT Algorithm

We summarize the RFoT methodology in Figure 3.8, and with a pseudo-code in

Algorithm 1. We first randomly sample tensor configurations (1). Then each tensor

configuration is factorized to obtain the latent components (2). Within each latent

component, we look at the latent factor representing each malware and benign-ware

sample (2). Clustering is applied to capture the groupings within each of these latent
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Figure 3.8: RFoT methodology overview

factors (2). We filter out the noisy clusters using the cluster uniformity score. In the

cases where we were able to acquire clean clusters, we take a class vote in a semi-

supervised fashion (2). After each tensor is factorized, and class votes are obtained

from each latent factor for the first dimension, we get the final class prediction via

max-vote (3). The specimens are predicted to be abstaining if they did not get any

class vote due either being part of clusters that were not uniform, not falling in a

cluster that had known samples, or because they were masked out due to not having

a signal.
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Algorithm 1 RFoT(X, y, n estimators, bin scale, t, R, min dims, max dims)

1: tensor configs = sample tensors(X, n estimators, R, min dims, max dims)

2: class votes = []

3: for config in tensor configs do ▷ Start the parallel execution

4: XXX(i) = build tensor(bin features(X, config), config) ▷ COO format

5: MMM(i) = decompose(XXX(i), Ri) ▷ CP-ALS or CP-APR

6: A(i,1) = get signals(MMM
(i)
::0) ▷ Mask out near zero elements for the mode-1

7: clusters = cluster latent factor(A(i,1)
:r ) ▷ For each Ri, MS or Component

8: for g
(i)
j,r in clusters do

9: if g
(i)
j,r in [Case 4,5,6 or 7] then ▷ See Figure 3.7 for the cases

10: continue ▷ Abstaining votes

11: else

12: class votes.append(vote(g
(i)
j,r, y)) ▷ Semi-supervised voting

13: end if

14: end for

15: end for ▷ End the parallel execution

ypred = max vote(class votes, y) ▷ Final class prediction

16: return ypred

We finally note that our implementation of RFoT computes the decomposition

of the ensemble of random tensor configurations in a parallel fashion, since they are

independent of one another. The parallel computation of the members of ensemble

allows us to reduce the total time needed for prediction. Specifically, in Algorithm

1, lines 3 through 15 are executed in parallel based on the number of jobs that the

user wants to run.

Now that we have introduced our methodology, we will next showcase the ex-

periment results from a case-study where we classified malware and benign samples

from the EMBER-2018 dataset using RFoT.
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Chapter 4: Experiments

In this section, we first introduce the dataset and the features used in our

experiments. Next, we summarize the performance evaluation metrics used in our

studies. Our experiments include the evaluation of RFoT performance under differ-

ent hyper-parameter settings. We then compare our results to the baseline models,

and test the performance of RFoT and the baseline models with the dropping per-

centage of the labeled data.

4.1 EMBER-2018 Dataset and Experiment Setup

For long time publicly available malware datasets for benchmarking ML meth-

ods have been limited. This is attributed to the challenges associated with obtaining

labeled malware data including copyright issues for benign data, and the long and

costly process of labeling malware data [8]. Anderson et al. addressed this problem

and introduced the EMBER-2018 dataset [17]. Since the release of EMBER-2018, it

has become a popular dataset used by researchers to evaluate their ML-based tech-

niques within the malware field. Consequently, we use EMBER-2018 in our study

to evaluate the capabilities of our introduced algorithm, RFoT.

EMBER-2018 consist of PE header and file meta-data features drawn from
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1.1 million Windows malware and benign-ware, out of which 800,000 of them has

labels. In this study we use 9 PE header features to construct our tensors, and train

the baseline models. Specifically, following features are used:

1. Number of Strings: the number of printable strings in the file

2. Strings Entropy: randomness measurement for the printable strings

3. File Size: size of the executable in bytes

4. Number of Exports: number of functions being exported by the binary

5. Number of Imports: number of functions being imported by the binary

6. Size of Code: the size of the code section (.txt) in PE header

7. Number of Sections: the total number of sections in the PE header

8. Has Debug: flag to indicate if the debug value is on/off

9. Has Signature: flag to indicate if the file has a signature

To conduct our experiments, we build 10 smaller subsets out of all the 800,000

instances in EMBER-2018, where each subset contains 10,000 balanced amounts

of malware and benign-ware. We apply our experiments to every 10 subset data

to show that the reported results are statistically significant. Our final results are

reported with a 95% Confidence Interval (CI). In Section 4.4, where the several

evaluation metrics used to report the performance of our method as compared to

the baseline models, we make test set size to be a 30% of 10,000 malware and

benign instances for each 10 subsets. For RFoT, 30% test size gives us the number

of samples without labels (unknown set).
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4.2 Performance Evaluation Metrics

4.2.1 Precision, Recall, and F1 Measure

To evaluate the performance of our method and the baseline models, we use

Precision, Recall, and F1 score. Precision score measures the ability of the model’s

correctly identify the positive class and can be calculated as follows:

Precision =
TP

TP + FP
(4.1)

where TP is the number of true positive predictions, FP is the false positives.

The Recall metric measures the extend to which model can detect the positive class,

malware in our case, and it is calculated as follows:

Recall =
TP

TP + FN
(4.2)

where FN is the number of false negatives. F1 score is calculated using both

the Precision and Recall scores together; therefore, F1 score is only high when both

Precision and Recall are high. F1 score can be calculated as follows:

F1 = 2 · Precision · Recall
Precision + Recall

(4.3)
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More specifically, F1 can be calculated as follows:

F1 =
TP

TP +
1

2
(FP + FN)

(4.4)

4.2.2 Execution Time and Abstaining Predictions

The other two metrics used in our results are the execution time for both RFoT

and baseline models, and the percent of abstaining predictions for RFoT. The exe-

cution time for the baseline models XGBoost, LightGBM, and XGBoost+SelfTrain

(the semi-supervised extension of XGBoost) include the time it took to train the

models and make predictions. Finally, the percentage of the abstaining predictions

gives tells us the percent of unknown samples that remained unknown (or with label

−1) after the prediction.

4.3 RFoT Hyper-parameter Performance Analysis

Prior to the comparison of our approach to the baseline models, we first eval-

uate its behaviour under different hyper-parameters including Bin Scale, Cluster

Uniformity Threshold, Max and Min Number of Dimensions, Tensor Rank, and

Number of Estimators. The analysis into the hyper-parameter settings allow us to

learn the best model setting for the dataset that we use, and also to understand

the limitations and capabilities of RFoT. We conduct the hyper-parameter analysis

using the CP-ALS tensor decomposition algorithm, and MS and Component clus-

tering methods. For CP-ALS, we set the maximum number iteration to be 250 for
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each experiment.

4.3.1 Bin Scale
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Figure 4.1: Abstaining percentage is shown for different values of the Bin Scale.
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Figure 4.2: F1 score is shown for different values of the Bin Scale.

The first hyper-parameter that we investigate is Bin Scale, which determines

the size of the tensor dimensions that represent the features with numerical values,

as described in Section 3.3.3. During this analysis, we perform prediction while

changing the bin scale hyper-parameter between 0.1 and 1.0 with the step-size of

0.1. We set the remaining of the hyper-parameters as follows: min dimensions = 7,

max dimensions = 8, cluster purity tol = 1.0, rank = 2, and n estimators = 1000.
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Here min dimensions and max dimensions determines the minimum and the max-

imum number of dimensions any random tensor can have respectively. Since this

experiment evaluates the bin scale hyper-parameter which only effects the features

with numerical values, to ensure that each random tensor would have a dimension

representing a feature with a numerical value we set the minimum number of dimen-

sions to be 7. cluster uniformity tol gives us the threshold to select any given cluster

to be used in voting, as described in Section 3.4.2. Using the hyper-parameter rank ,

we set each random tensor to be decomposed with rank-2. Finally, n estimators

determines the number of random tensors to be used.

In Figure 4.1, we can see that as the bin scale is increased, the percent of

abstaining predictions for RFoT with Component clustering drops from around 80%

to 75% while it increases from around 66% to 70% for MS clustering. At the same

time, Figure 4.2 shows that the F1 score for RFoT with both MS and Component

clustering increases as the bin scale reaches 1.0. When the bin scale is set to 1.0, the

size of the dimension representing the given feature is equal to the number of unique

values present in the given feature vector X:f . The results in this analysis suggest

that reducing the dimension size (or the number of bins) for the given numerical

features, could result in under-fitting, or missing the details that help separate

the malware and benign-ware. In addition, the fact that RFoT with Component

clustering saw both reductions on abstaining prediction while increasing F1 score

further supports RFoT being able to make a more precise decision for the given

labels when we use a higher bin scale value.

Notice that RFoT with Component clustering yields better malware-detection
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results, but higher abstaining predictions. This could be attributed to MS cluster-

ing being able to extract meaningful clustering results that separate malware and

malware from a single component, while the Component clustering misses the cases

such as the one shown in Figure 3.2. Finally, we do see a larger performance im-

provement for the MS clustering, which indicates that the added information with

the increased dimension size could be resulting in cleaner in-component clusters that

separate classes.

4.3.2 Cluster Uniformity Threshold
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Figure 4.3: Abstaining percentage is shown for different values of the Cluster Uni-
formity Threshold.

We next look at the cluster uniformity threshold, which determines the thresh-

old to remove the noisy clusters. In this analysis, the uniformity threshold is varied

between 0.1 and 1.0 with a step-size of 0.1. The remaining of the hyper-parameters

are kept same as the Bin Scale experiment form Section 4.3.1 except the following:

min dimensions = 3 and bin scale = 1.

The first point to note in the results is that we do not get any abstaining

predictions until after the uniformity threshold of 0.6 as shown in Figure 4.3. This
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Figure 4.4: F1 score is shown for different values of the Cluster Uniformity Thresh-
old.

results in poor performance for both MS and Component-based RFoT as shown

in Figure 4.4 with low F1 scores. It can be seen, however, the F1 score improves

rapidly as the cluster uniformity score is increased. The increase in the threshold also

increases the abstaining predictions. This occurs because when we choose a higher

cluster purity threshold, the clusters to be used in voting need to be cleaner such that

the known classes in the cluster should represent mainly a single class. Specifically, it

there should only be a single known class in the cluster when cluster uniformity tol =

1. When we encounter clusters with known samples from a mix of different classes,

using the threshold, the clusters are removed from the consideration for voting. This

describes the reason behind the increased abstaining predictions. Since we begin to

use only the cleaner clusters, we do see the increased performance of the model.

The final point to note in this experiment is that MS-based clustering does out-

perform Component-based clustering with lower values of cluster uniformity thresh-

old. This could indicate that the CP-ALS algorithm is more capable of finding

meaningful in-component clusters separating classes rather than among-component

clusters where each component individually separates classes.
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4.3.3 Maximum and Minimum Number of Dimensions
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Figure 4.5: Abstaining percentage is shown for different values of the Max Dimen-
sions parameter.
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Figure 4.6: F1 score is shown for different values of the Max Dimensions parameter.

The next hyper-parameters we investigate are the choice of the minimum and

the maximum number of dimensions the random tensors should have within the

ensemble. To test this, we set the maximum number of dimensions between 4

and 8, with a step size of 1. For the minimum number of dimensions, we look at

between 3 and 7 with a step size of 1. The remaining hyper-parameters are kept

the same as the previous experiment in Section 4.3.1. Figures 4.5 and 4.6 show that

we get relatively stable results for increasing maximum number of dimensions. We

observe a similar trend for the Component clustering-based RFoT as the minimum
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Figure 4.7: Abstaining percentage is shown for different values of the Min Dimen-
sions parameter.
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Figure 4.8: F1 score is shown for different values of the Min Dimensions parameter.

number of dimensions hyper-parameter is increased, as shown in Figures 4.7 and 4.8.

However, we do see an improvement in malware classification for the MS clustering-

based RFoT as the minimum number of possible dimensions is increased as shown

in Figure 4.8. At the same time, there is an increase in the abstaining predictions

for RFoT with MS clustering as shown in Figure 4.7. This result could indicate that

CP-ALS begins to extract increased number of latent factors with noisy patterns;

however, the patterns that do give meaningful result are more uniform.
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Figure 4.9: Abstaining percentage is shown for different values of the Rank param-
eter.
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Figure 4.10: F1 score is shown for different values of the Rank parameter.

4.3.4 Tensor Rank

In our random ensemble of tensor configurations model, one of the tensor

settings that can be randomly sampled is the tensor rank. We next look at the

performance of RFoT with increasing fixed rank (where each tensor in the ensemble

is decomposed with the same rank), and also with the randomly selected rank. The

goal of this analysis to determine if the patterns extracted from an ensemble of

tensor decompositions with randomly selected ranks can reach to a consensus in

determining the class of the given samples, while avoiding the need to correctly

determining the rank. This hypothesis also aligns with the need for the cluster
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uniformity calculations, where if the extracted patterns result in noisy clusters due

to over-fitting or under-fitting, then we would want to remove these clusters using

the cluster uniformity threshold.

For the fixed ranks, we test RFoT for MS and Component clustering where

the ranks are ranged between 2 and 20 with the step size of 1. We also randomly

choose the rank in this experiment for comparison to the fixed rank. The remaining

of the hyper-parameters are as follows: min dimensions = 3, max dimensions = 8,

bin scale = 1.0, cluster purity tol = 1.0, and n estimators = 1000.

In Figure 4.9, we can see that as the rank is increased the percent of abstaining

predictions for both RFoT with Component and MS clustering drops. This drop is

more significant for the MS clustering based RFoT. As the number of components, or

the rank, is increased, RFoT obtains more opportunities to find clusters to retrieve

class votes. Increase in the total number of clusters, which results in increased

number of possible class votes for the unknown specimens could describe the reason

behind the drop in the number of abstaining predictions. At the same time, the

steeper decline in the number of abstaining predictions for RFoT with MS clustering

indicates that the increasing rank improves the capability of CP-ALS to extract

patterns where in-component groupings separate malware and benign-ware.

As the abstaining predictions drop with the increasing rank, the performance

of the model slightly drops as shown in the Figure 4.10. We again see a higher drop,

compared to the Component clustering, for the MS clustering which could be the

result in the steep decline in the number of abstaining predictions. Finally, we see

that random selection of rank plays a role to smooth out the results for both the F1
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score and the number of abstaining predictions.

4.3.5 Number of Estimators (Random Tensors)
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Figure 4.11: Abstaining percentage is shown for different values of the Num Esti-
mators parameter.
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Figure 4.12: F1 score is shown for different values of the Num Estimators parameter.

The final hyper-parameter that we investigate is the selection of the total

number of estimators, or number of random tensor configurations in our ensemble.

We test number of estimators between 100 and 10,000 with the step size of 100. The

remaining of the hyper-parameters are kept as same as the ones we used in Section

4.3.4, except we use a fixed rank of rank = 2. We select a low-rank of 2 motivated
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from the results presented in Section 4.3.4. Although we might under-fit the data,

cluster purity score allows us to separate out the noisy results and only keep the

meaningful patterns, which enables achieving a better malware prediction accuracy.

We observe that as the number of estimators increases, the number of abstain-

ing predictions drops as shown in Figure 4.11. The increased number of estimators

also increases the number of clusters obtained from each tensor decomposition where

we can potentially obtain class votes. The dropping number of abstaining predic-

tions with the increasing number of estimators could be due to the increase in the

votes. With the dropping number of abstaining predictions, we also see a decline in

F1 score as shown in Figure 4.12. However, for both the F1 score and the number of

abstaining predictions, we see that the decline begins to flatten. Therefore, although

the increased number of votes results in a drop in performance, as we begin to obtain

more votes from a larger ensemble, the model begins to make better decisions and

slow down the performance decline. The performance of our model converging to a

plateau shows that RFoT is capable of using the decision made from a majority of

random tensors to obtain accurate predictions when the size of our ensemble is large

enough. Differently, when the ensemble is small, RFoT is more certain (accurate)

for the predictions made, but a smaller number of samples are predicted due to the

high abstaining prediction percentage.
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Table 4.1: Baseline comparisons
Model Method F1 Precision Recall Abstaining (%) Time (sec)

RFoT (Component, CP-ALS) Semi-supervised 0.968 (+-0.005) 0.968 (+-0.005) 0.968 (+-0.006) 75.703 (+- 0.863) 536.151 (+- 5.132)
RFoT (MS, CP-ALS) Semi-supervised 0.913 (+-0.005) 0.915 (+-0.004) 0.913 (+-0.005) 58.158 (+- 0.399) 554.831 (+- 5.263)
RFoT (Component, CP-APR) Semi-supervised 0.940 (+-0.016) 0.941 (+-0.016) 0.940 (+-0.016) 93.220 (+- 1.534) 880.700 (+- 21.192)
RFoT (MS, CP-APR) Semi-supervised 0.793 (+-0.008) 0.805 (+-0.007) 0.797 (+-0.008) 54.218 (+- 1.646) 1582.156 (+- 20.056)
LightGBM Supervised 0.871 (+-0.005) 0.871 (+-0.005) 0.871 (+-0.005) NA 78.595 (+- 6.040)
XGBoost Supervised 0.873 (+-0.005) 0.874 (+-0.005) 0.873 (+-0.006) NA 93.805 (+- 2.752)
XGBoost+SelfTrain Semi-supervised 0.872 (+-0.006) 0.873 (+-0.006) 0.873 (+-0.006) NA 87.410 (+- 6.813)

4.4 Baseline Comparisons

We compare RFoT with CP-ALS and CP-APR decomposition, using MS

and Component clustering, against baseline models XGBoost, LightGBM, and XG-

Boost+SelfTrain. For each RFoT experiment, we set the hyper-parameters to be

same as the Section 4.3.4 except the rank is fixed to rank = 2. For CP-APR

we use 16 parallel jobs to decompose each random tensor using GPUs, while for

CP-ALS is decomposed with 50 parallel jobs on CPUs. We tune the baseline mod-

els using a popular Python package Optuna [70]. XGBoost and LightGBM tuned

with 3-fold stratified cross-validation and 50 trials to identify the optimal hyper-

parameters. The tuning settings, or search space for the optimal hyper-parameters,

listed below are the same from our prior work on semi-supervised malware family

classification [69].

For LightGBM, we used 250 maximum number of iterations, gbdt boosting

type, and objective function binary logloss. The following hyper-parameters were

tuned (ranges are shown in parenthesis): min data in leaf (5-100 in log scale),

max depth (2-7), bagging freq (0-5), bagging fraction (.5-1.0), learning rate (.001-

.1 in log scale), and feature fraction (.1-.7).

As for XGBoost, we set the maximum boosting rounds to 250 and use the
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binary-hinge objective function. The following hyper-parameters were tuned (ranges

are again shown in parenthesis): max depth (2-10), eta (.003-0.5 in log scale), sub-

sample (.2-.7), rounds (10-300), colsample bytree (.3-1.0), colsample bylevel (.5-1.0),

and lambda (.1-2.0). We use the same tuned hyper-parameters for XGBoost for the

XGBoost+SelfTrain baseline model.

In Table 4.1, we compare RFoT to baseline models with F1, Precision, Recall,

and computation time in seconds. We also show the percent of abstaining predic-

tions for RFoT. From the table, it can be seen that each RFoT model outperforms

every other baseline model. RFoT with Component clustering and CP-ALS tensor

decomposition yield the highest F1 score of 0.968. However, this model also gives

a high abstaining prediction of 75.70%. Therefore, the ideal model choice is RFoT

with MS clustering and CP-ALS tensor decomposition with still a high F1 score of

0.91 and a lower abstaining prediction of 58%. CP-APR with component clustering

also yield high performance with an F1 score of 0.94; however, the percent of ab-

staining predictions was the highest with 93.22%. Differently, RFoT with CP-APR

decomposition and MS clustering yield the lowest F1 score of 0.79. The fastest

model in our comparison was LightGBM with 78.59 seconds. These results indicate

that RFoT is an ideal model to obtain precise malware detection results by compro-

mising to a lower number of samples that can be predicted due to the abstaining

predictions. It is also worth noting that RFoT, a semi-supervised solution, outper-

forms supervised models with a potential added benefit of better generalizability to

novel malware.
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4.4.1 Labeled Malware Data Scarcity Experiment
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Figure 4.13: Abstaining percentage is shown for different values of the unknown
fraction.
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Figure 4.14: F1 score is shown for different values of the unknown fraction.

Compared to other ML fields, acquiring labeled malware data is time-consuming

and expensive [8]. This is especially problematic because the popular supervised ML

solutions used to detect malware often need a large quantity of labeled data to yield

good performance. In addition, Raff et al. emphasize that semi-supervised solu-

tions within the ML-based solutions to Windows malware classification have not
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received enough attention, despite the potential benefits of better generalizability

to novel malware and achieving higher performance when used with low-quantity

of labeled data [8]. To this end, we test our semi-supervised solution’s performance

with a dropping quantity of labeled data and compare it to the supervised and

semi-supervised baseline models.

We range the fraction of unknown specimens between 0.02 and 0.98 with the

step size of 0.02. The fraction of unknown samples θ means that the proportion of

the known samples would be 1− θ. For the supervised baseline models, the fraction

of the unknown samples θ is equivalent to the size of the test set, while the fraction

of the known samples determines the training set size. The baseline models are also

tuned in this experiment as described in Section 4.4.

In Figure 4.13, we can see that the percent of abstaining predictions for RFoT

with CP-ALS and CP-APR, and with MS and Component clustering. CP-APR

with Component clustering has the highest number of abstaining predictions, and

CP-APR with MS clustering has the lowest. At the same time, Figure 4.14 shows

that CP-APR with MS clustering has the lowest performance. This indicates that

CP-APR is not able to find meaningful patterns that separate the classes within

each latent factor. However, CP-APR with Component clustering yields high per-

formance results, with a trade-off of high number of abstaining predictions. CP-ALS

with MS and Component clustering has lower percent of abstaining predictions with

the higher F1 scores. As the percent of the fraction of the unknown specimens in-

creases, the percent of the abstaining predictions first remain stable and then begins

to rapidly drop, specifically after an around unknown fraction of 0.7, as shown in
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Figure 4.13. This drop could be happening due to the cluster uniformity score

failing to filter out noisy clusters due to now them being represented by known

specimens from the same class, as the other known specimens which revealed the

bad uniformity are lost with the increasing unknown fraction.

It can be seen in Figure 4.13 that each of our baseline models yield a simi-

lar performance as the fraction of unknown specimens increase, except when XG-

Boost+SleftTrain gain a high performance decline after around unknown fraction of

0.74. RFoT with CP-ALS and MS clustering, and CP-APR with Component cluster-

ing outperforms each baseline until XGBoost and LightGBM begins to outperform

RFoT with CP-ALS and MS clustering after the unknown fraction of 0.86, and RFoT

with CP-APR and Component clustering after unknown fraction of 0.94. Since the

abstaining predictions help in maintaining model performance, RFoT based on CP-

ALS with Component clustering outperforms each of the baseline model regardless

the fraction of unknown specimens.

We have shown the performance of RFoT with different hyper-parameter set-

tings then compared it to the tuned baseline models which prior work used to

report state-of-the-art malware detection results. Our results revealed RFoT, a

semi-supervised solution, has superior capability when detecting malware compared

to the baseline models, including the supervised algorithms. Our experiments also

showed that RFoT can yield higher accuracy when detecting malware as the percent

of known samples drops. We next list possible areas of future work before concluding

the thesis.
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Chapter 5: Future Work and Conclusions

5.1 Future Work

In this thesis, we used CP-ALS and CP-APR tensor decomposition algorithms

with MS and Component clustering to test the capabilities of RFoT. Future work

includes using other tensor decomposition methods and clustering approaches to

investigate if the performance of RFoT can be improved. We also note that we have

experimented with using RFoT on other datasets and for multi-class classification

which has returned promising results indicating a good generalizability of our al-

gorithm to other problems. For instance, we find that RFoT was able to perform

accurate multi-class classification using the IRIS dataset and perform accurate clas-

sification on a TF-IDS features matrix of documents from 2 classes obtained using

the 20-Newsgroup dataset. We provide these examples in our repository for RFoT1.

Future work can perform a detailed investigation into using RFoT for other data,

and also for multi-class classification. For instance, the EMBER-2018 dataset in-

cludes AV-Class labels for the malware samples. Future work can use these samples

to test if RFoT can be used to classify malware families. In addition, this work uti-

1Examples for when using RFoT on other problems is available at https://github.com/

MaksimEkin/RFoT/tree/main/examples
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lized only a fraction of the features available in the EMBER-2018 dataset. Other,

potentially more detailed, features such as byte-histogram can be used to form the

tensors, which could potentially improve the specificity of our model. We also leave

this to future work.

5.2 Conclusions

We introduced a semi-supervised method, named RFoT, that leverages tensor

decomposition for classifying malware and benign ware. Tensor decomposition can

discover meaningful latent patterns that can be captured via clustering methods.

These patterns distinguish malware and benign-ware and enable us to use known

samples as a reference point to vote on class labels of the unknown specimens.

Because the information extracted with tensor decomposition depends on the con-

figuration of the tensor, we formulate a model that creates an ensemble of random

configurations and makes use of the decisions made by the majority of the popu-

lation in the ensemble via max-vote to make the final class prediction. We showed

that our semi-supervised method yields more precise classification results compared

to the baseline supervised and semi-supervised ML models, with a trade-off on being

able to predict a lower number of samples due to the abstaining predictions.
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[50] Paul Irofti and Andra BƒÉltoiu. Malware identification with dictionary learning.
In 2019 27th European Signal Processing Conference (EUSIPCO), pages 1–5,
2019.

[51] Danai Koutra, Evangelos E. Papalexakis, and Christos Faloutsos. Tensorsplat:
Spotting latent anomalies in time. In 2012 16th Panhellenic Conference on
Informatics, pages 144–149, 2012.

[52] Koji Maruhashi, Fan Guo, and Christos Faloutsos. Multiaspectforensics: Pat-
tern mining on large-scale heterogeneous networks with tensor analysis. In 2011
International Conference on Advances in Social Networks Analysis and Mining,
pages 203–210, 2011.

[53] David Bruns-Smith, Muthu Manikandan Baskaran, James R. Ezick, Thomas
Henretty, and Richard A. Lethin. Cyber security through multidimensional
data decompositions. 2016 Cybersecurity Symposium (CYBERSEC), pages
59–67, 2016.

[54] M. E. Eren, J. S. Moore, and B. S. Alexandrov. Multi-dimensional anomalous
entity detection via poisson tensor factorization. In 2020 IEEE International
Conference on Intelligence and Security Informatics (ISI), pages 1–6, 2020.

[55] M. E. Eren, J. S. Moore, E. W. Skau, E. A. Moore, M. Bhattarai, G. Chen-
nupati, and B. S. Alexandrov. General-purpose unsupervised cyber anomaly
detection via non-negative tensor factorization. Digital Threats: Research and
Practice, 2022.

63



[56] James Ezick, Tom Henretty, Muthu Baskaran, Richard Lethin, John Feo, Tai-
Ching Tuan, Christopher Coley, Leslie Leonard, Rajeev Agrawal, Ben Parsons,
and William Glodek. Combining tensor decompositions and graph analyt-
ics to provide cyber situational awareness at hpc scale. In 2019 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1–7, 2019.

[57] Hideaki Kanehara, Yuma Murakami, Jumpei Shimamura, Takeshi Takahashi,
Daisuke Inoue, and Noboru Murata. Real-time botnet detection using non-
negative tucker decomposition. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, SAC ’19, pages 1337–1344, New York,
NY, USA, 2019. Association for Computing Machinery.
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