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Abstract—Non-negative matrix factorization (NMF) with
missing-value completion is a well-known effective Collaborative
Filtering (CF) method used to provide personalized user recom-
mendations. However, traditional CF relies on a privacy-invasive
collection of user data to build a central recommender model.
One-shot federated learning has recently emerged as a method
to mitigate the privacy problem while addressing the traditional
communication bottleneck of federated learning. In this paper, we
present the first one-shot federated CF implementation, named
One-FedCF, for groups of users or collaborating organizations.
In our solution, the clients first apply local CF in-parallel to
build distinct, client-specific recommenders. Then, the privacy-
preserving local item patterns and biases from each client are
shared with the processor to perform joint factorization in order
to extract the global item patterns. Extracted patterns are then
aggregated to each client to build the local models via information
retrieval transfer. In our experiments, we demonstrate our ap-
proach with two MovieLens datasets and show results competitive
with the state-of-the-art federated recommender systems at a
substantial decrease in the number of communications.

Index Terms—privacy, non-negative matrix factorization, one-
shot, federated learning, recommendation system

I. INTRODUCTION

Established machine learning (ML) recommender methods
rely on a privacy-invasive collection of user data to train cen-
tral models at the processors. As privacy awareness grows and
stricter regulations are introduced, user expectations regarding
data privacy are changing. For instance, the European General
Data Protection Regulation (GDPR) has implications on how
recommender systems collect and handle user data [1]. Future
recommender systems will need to prioritize privacy policies
to remain legally compliant. Federated learning-based recom-
mender systems are a possible solution to this problem by
performing part of the training process client-side, minimizing
the amount of data sent to the processors.

Federated recommenders based on Collaborative Filtering
(CF) have already been proposed [2], [3]. Such systems
identify and filter potential user interests by collaboratively
learning from the past preferences of many users [4], [5],
performing multiple communications between the server and
its clients at every iteration. Multi-round client participation

can suffer from communication bottlenecks due to limited user
data plans, potentially slow and unreliable network connec-
tions, and costs of cryptographic protocols [6]. The increased
number of communications also increases the risk for attackers
to intercept model updates. Thus, communication efficiency
in federated CF has been an active field of study [7], [8].
While these approaches lower the communication complexity,
they still expect multi-round client participation. In response to
this set of desirables, an emerging field of one-shot federated
learning addresses the communication problem by performing
just a single round of communication between each client and
the processor per training session [6], [9]–[14]. While the
proposed one-shot federated methods significantly reduce the
cost of communication, work thus far has only focused on
supervised and semi-supervised classification problems.

In this paper, we introduce, what is to the best of our knowl-
edge, the first implementation of one-shot federated learning
for CF and recommenders. Our approach, named One-FedCF,
is an unsupervised, communication-efficient (for the number of
communications) federated method for providing privacy to a
group of users or set of organizations (clients). In our one-shot
federated setup, we achieve single pair communication after
the initial small-sized communication to calculate the global
mean between the server and its clients. One-FedCF first trains
local client-specific CF in parallel. Specifically, our local CF is
based on Non-negative Matrix Factorization (NMF) on user’s
explicit feedback data [15]. The extracted latent factors for
items from each client along with the item biases are then
shared with the processor to extract the global item patterns
via transfer of information retrieval and joint factorization.
Global item patterns and biases are then aggregated to each
client to improve the recommendation capability of the distinct
local models. Since the shared data between the clients and
server is with respect to the items, the added benefit of One-
FedCF is that the user-based information is abstracted, where
the processor does not know which user is part of which
group (client) or how many users are in the group. In our
experiments, we evaluate our approach on the MovieLens
100K and MovieLens 1M datasets [16] and show that One-
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FedCF achieves similar root-mean-square error (RMSE) with
a single pair of communication as compared to the state-
of-the-art federated CF with multi-round communication. In
summary, our main contributions include:

• Introducing the first implementation of a one-shot feder-
ated collaborative filtering method.

• Demonstrating that NMF with joint factorization and
transfer of information retrieval improves the recommen-
dation capability of groups or organizations.

• Showcasing that our one-shot approach achieves similar
RMSE as compared to the state-of-the-art federated CF.

II. BACKGROUND

A. Federated Learning
Federated learning formalized the concept of learning local

models and then aggregating them to create a centralized
global model in the pursuit of sharing knowledge derived from
data. Further research has examined more efficient communi-
cation [17], [18], ensuring privacy of participants [19], [20],
and extensions to recommendation systems [2], [3], [7], [20],
[21]. A known drawback of these methods is the need for
frequent communication of model updates. Our work is most
similar to the concept of one-shot federated learning, where
the goal is to limit communication to one iteration. [6]. A
handful of approaches have examined methods for knowledge
distillation [9], [10], data distribution modeling for synthetic
data generation [9], [12], model selection [14], probabilistic
aggregation [11] and addressing privacy-preserving aggrega-
tion [13]. Methods have been evaluated in the supervised
and semi-supervised image and text classification domain and,
to our knowledge, our work introduces the first one-shot
federated learning method for unsupervised recommendation.

Frequent communication between devices and the server in
federated learning is also a concern as the user data is left
vulnerable to potential attacks [22]. Algorithms attempt to
mitigate membership inference attacks [23], in-training data
point identification, and inversion attacks [24]. The majority
of federated learning methods use gradient information sent to
the central server on the weights of the model. However, prior
work has shown a method to recover private data from the
exchanged gradients [25]. In response, works have examined
how to integrate homomorphic encryption for data sharing
[21], [26] and differential privacy algorithms [20]. Prior work
in federated CF similarly evaluated the privacy of federated
matrix factorization with gradient sharing and showed that
original data can be reconstructed from gradient updates [22].
Within our work we forgo sharing gradients entirely.

Several prior works explore creating federated recommender
systems using matrix factorization to solve problems similar to
our work within CF [27], [28]. They focus on sharing gradient
updates based on a secret sharing mechanism. Our work is
similar to [29] in which NMF is used as a local privacy-filter
within a federated learning paradigm. Their approach involves
learning a local latent representation for a classification task.
In our approach, we use latent representation for the utility of
CF within a group setting for recommendation [30].

B. Non-negative Matrix Factorization (NMF)

NMF is an unsupervised dimensionality reduction method
based on low-rank approximation. NMF approximates a given
non-negative observation matrix X ∈ Rn×m

+ , as a product of
two non-negative matrices, i.e., X ≈ WH, where W ∈ Rn×k

+ ,
and H ∈ Rk×m

+ , and usually k ≪ m,n. Here, n is the number
of samples, m is the number of features, and k is the low-rank
of the approximation. We perform this factorization via a non-
convex minimization with non-negativity constraint, utilizing
the multiplicative updates algorithm [31], and Frobenius norm
as distance metric to minimize ||X−WH||2F . The factors W
and H are estimated via alternative updates following the rules
W = W XHT

WHHT and H = H WTX
WTWH

.

C. Collaborative Non-negative Matrix Factorization (CNMF)

The distance minimization between X and approximation
WH in NMF includes the zero entries in X. However, the
standard NMF minimization does not work for CF because
the zeros (the missing-values) in X are the future recommen-
dations that we want to perform. To this end, our optimization
needs to be done only with respect to the non-zero entries
in X instead. Estimating the missing data value in this way,
i.e. the user’s future recommendations, is known as the matrix
completion problem [32]. For this, we use the modified version
of the Collaborative NMF algorithm presented in the Surprise
package [15], and call it CNMF for simplicity. We modify the
Surprise algorithm with non-negative projections to ensure the
non-negativity of the latent factor matrices, and adopt its bias
terms to the federated learning scheme (Section III-A).
X ∈ Rn×m

+ is a matrix of movie ratings from n users for
m movies where each user i rated a subset of m items, such
that a non-zero entry ri,j = Xi,j is the rating from user i for
movie j. The user profile matrix is given by W ∈ Rn×k

+ and
the movie profile matrix is given by H ∈ Rk×m

+ . The future
rating of user i for movie j is predicted with X̂i,j = Wi,:H:,j .
For recommender systems, we also consider the bias terms
bW ∈ Rn and bH ∈ Rm to remove the bias given by users
or bias for an item. Here bH describes how well an item is
rated compared against the average across all of the items
without accounting for the interaction between the item and
a given user. Similarly, bW describes the user’s tendency to
provide better/worse ratings compared to the average. We also
account the group bias, where nnz(X) represents a vector of
non-zero entries (ratings) in X, and group bias is:

µ =
1

|nnz(X)|
·
|nnz(X)|∑

i

nnz(X)i (1)

such that µ is simply the average of the ratings. The biases
are included in predicting the rating from user i for movie
j as shown in the Equation 2, and the performance of the
prediction can be measured with RMSE =

||X−X̂||2F√
mn

:

X̂i,j = Wi,:H:,j + bWi
+ bHj

+ µ (2)
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Here i and j correspond only to the non-zero coordinates
(ratings) such that Xi,j > 0 for each i and j pair. The min-
imization in CNMF is based on Tikhonov regularization [33]
for regularizing the ill-posed problems to obtain higher pre-
diction accuracy. We perform this minimization with gradient
descent updates to estimate the factors W and H with closed
form alternating update expressions W = W XHT

X̂HT+αW
and

H = H WTX
WT X̂+βH

respectively. The bias term updates are
bW = bW + ηW

∑m
j=1(err:,j − γ ∗ bW ) and bH = bH +

ηH
∑n

i=1(erri,: − δ ∗ bH) where erri,j = Xi,j − X̂i,j .

III. METHOD

A. One-FedCF: One-shot Federated Collaborative Filtering

1) Step 1 - Clients (Local CF via Collaborative NMF):
Let us consider a set of N clients each with their local data
Xg ∈ Rng×m

+ , where g is in range 0 ≤ g ≤ N , and non-
zeros in Xg are the ratings for m items (e.g., movies) by ng

users belonging to the group g. The first step involves a pair
of small-in-size communications between each client and the
server. In order to put global bias into consideration of the
local CNMF, each client sends the group bias µg (Equation 1)
to the server and receives the global bias µGlobal (Equation 3).

µGlobal =
µ1 + µ2 + · · ·+ µg + · · ·+ µN

N
(3)

Next, using µGlobal and Xg , each of the N clients trains
local CF models in parallel using the Collaborative NMF
approach (Section II-C) to obtain local patterns Wg ∈ Rng×kg

+

and Hg ∈ Rkg×m
+ , and biases bgW and bgH . At this point,

each client has a local CF model. However, we would like
to utilize federated learning to improve the performance of
these local models. Therefore, we proceed with our method
where each client uploads their (Hg)T and bgH to the server
(the superscript T represents the matrix transpose).

2) Step 2 - Server (Joint Factorization via NMF): Once
the processor receives the local item factors and the item
biases from each client, it first forms the global X ∈
Rm×(k1+k2+···+kg+···+kN )

+ (Equation 4) and calculates the
global item bias (Equation 5):

X = [(H1)T , (H2)T , · · · , (Hg)T , · · · , (HN )T ] (4)

bGlobal
H =

b1H + b2H + · · ·+ bgH + · · ·+ bNH
N

(5)

It can easily be seen that concatenation is equivalent to a
joint factorization since Frobenius norms are sums of squares
of residuals, and sums of squares can be re-arranged to be
summed in arbitrary order. Because X is the concatenation
of each (Hg)T from the clients, factorization of X is joint
factorization, which serves to identify the common global item
patterns. Here, we utilize our method SPLIT [34], [35], which
excludes patterns that are non-negative linear combinations of
other patterns. Since the joint factor matrix X is dense, we

apply standard NMF as described in Section II-B to obtain
the factor matrices WGlobal ∈ Rm×K

+ and the transfer matrix,
HGlobal ∈ RK×(k1+k2+···+kg+···+kN )

+ . Here, the objective is
to estimate common item patterns across the N groups. We
let Mg represent a slice from HGlobal belonging to group g:

Mg = HGlobal
:,k1+k2+···+kg−1:kg+kg+1···+kN (6)

Note that since the server does not have access to clients’ latent
feature matrix for user patterns Wg and user biases bgW , the
server cannot directly re-construct the private data Xg of a
group g. Hence, providing the server with only (Hg)T , bgH ,
and µg minimizes the shared data and provides a level of
privacy to the groups. Finally, the server broadcasts Mg to
each client g along with WGlobal and bGlobal

H .
3) Step 3 - Clients (Information Retrieval Transfer): The

next step is to transfer the global information retrieval, ob-
tained via NMF [36], to the local clients, g. This is done
by transferring to each client the transformations of the local
coordinates, Mg , needed to adjust all local patterns to the
common global patterns, Wg . Once the client g receives both
the local transfer matrix Mg and the common global patterns
WGlobal, the step of the transfer of the information retrieval is
completed. Here, the goal is to improve the recommendation
capability of the local CF model. This is simply done with a
single step using Mg as follows:

W∗g = Wg(Mg)T (7)

4) Step 4 - Clients (Local Recommendations): At this point
each of the N clients has an improved client-specific CF
model. Using these local models each client can perform rating
estimation for recommendations. A rating of movie j for user
i in group/client g is now estimated as follows:

X̂g
i,j = W∗g

i,: (W
Global)T:,j + bgWi

+ bGlobal
Hj

+ µGlobal (8)

B. Privacy by Design and Implementation Considerations

1) Control and Flow of Data: One-FedCF utilize NMF and
CNMF; therefore, it is designed for NMF-based applications
such as recommendation systems. Users have local control of
their data Xg within a group which extends to the context of
collaborating organizations [30], [37], [38]. In addition to their
local data, groups also have access to the derived data obtained
from the processor, which includes WGlobal, bGlobal

H , Mg , and
µGlobal. The central aggregator has access to the latent feature
matrices Hg and bias vectors bgH for items, and the average
ratings µg from each group. This means that the server does
not have access to the raw data of the groups.

2) Implications of group based design: Our method is
designed to federate data from groups of users or a set of orga-
nizations. The group-based design has implications for privacy
and communication of the data among the group members. If
the group members use a single device (household scenario),
that device can be the client participating in federated learning.
When the members of the group use multiple devices we need
to consider the potential ways of data sharing between the
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members. One approach is where each user’s device becomes
a client containing data from the other users that are in the
same group. This approach would require the members of a
group to first aggregate their data among themselves. Another
option is to use hierarchical federated learning [39], where
the members of the group send their data to an intermediate
server which becomes the client participating in federated
learning. While the second option provides better privacy
among the group members, the control of the user data is
relinquished to the intermediate server. The group approach
also extends to the scenario where a set of organizations
collaborate without sharing their user’s data. In the case of
collaborating organizations, each participant becomes a client
similar to the household scenario. Finally, the benefit of group-
based design is that the user information is further abstracted;
the server does not need to know which user belongs to which
group or how many users are members of a given group.

IV. EXPERIMENTS

A. Dataset and Experimental Setup

TABLE I: MovieLens 100K and 1M datasets statistics.

Dataset Users Items Num. Ratings Mean Num. Groups
MovieLens 100K 610 9,724 100,836 36.70 (± 2.61)
MovieLens 1M 6,040 3,706 1,000,209 355.50 (± 11.80)

We evaluate our method on the MovieLens 100K and 1M
datasets: benchmarking datasets for evaluating recommender
methods [16]. We use the explicit feedback of users for movie
ratings, which are between 1 and 5 (Table I). When evaluating
One-FedCF, we randomly assign users to be members of
groups of randomly selected size between 3 and 30. To show
that our results are statistically significant, we use distinct
random seeds to group the users 10 times for the MovieLens
100k dataset and 4 times for the MovieLens 1M dataset.
For the non-private CF model baseline (baselines will be
explained in Section IV-C), which is not based on groups,
each experiment with a distinct random seed is used to select
a different test set. We report our mean results with a 95%
Confidence Interval (CI). Table I also includes the average
number of groups we generate per experiment.

We test the performance of our method on a held-out test
set of 20% of the entire dataset. For the non-private CF models
and each group’s local CF models, the hyper-parameter tuning
is performed using a validation set sized at 20% of the training-
set with 5 fold cross-validation (CV) per tuning trial using
a popular package named Optuna [40]. We run 100 tuning
trials for the MovieLens 100K dataset and 50 tuning trials for
the larger MovieLens 1M dataset. The latent factor matrices
for the non-private CF models and each group’s local CF
are initialized randomly and the following hyper-parameters
are tuned by running the models for a maximum of 100
iterations (ranges are given in parentheses in log scale): α
and β (0.04-0.08), γ and δ (0.01-0.04), ηW and ηH (0.002-
0.009). We also tune k (2-[min(ng, 21) − 1]). To tune the
NMF performed by the server (Section III-A2), we test for
k ∈ [2, 4, 6, · · · , 30] with 5 fold CV for each k (again 20%
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Fig. 1: Comparison of RMSE scores of groups for One-
FedCF and standard CF and display of how much One-FedCF
improves group’s RMSE. We also show the number of ratings
and members of each group.

validation-set size) with a maximum 1,000 iterations. The
latent factor matrices are initialized with Non-negative Double
Singular Value Decomposition (NNDSVD) [41]. After the
tuning, we run the ultimate CF models for a maximum of
500 iterations using the found optimal hyper-parameters.

B. Performance Analysis

The goal of federated learning is to utilize data from
all users to build better performing ML models while also
preserving the privacy of users. Therefore, we begin the
analysis of One-FedCF by measuring its improvement of
recommendation performance for each group’s model. To do
so, we compare the RMSE of distinct local models obtained
with One-FedCF to traditional CF with CNMF for each group
across all experiments. In Figure 1, we show the RMSE for
each group obtained using One-FedCF and CNMF, the change
in group RMSE after One-FedCF, and the number of members
and ratings belonging to the group. The displayed results are
for the groups from all runs of the experiments.

The first row of Figure 1 shows that One-FedCF improves
the RMSE scores for the majority of the groups across both
of the datasets. This can also be seen in the last row of the
figure which shows the difference in RMSE between standard
CF and One-FedCF. A small number of the groups (6) do see a
drop in performance in the MovieLens 100K dataset. However,
the remaining majority of the 365 groups see an average
of 0.22 RMSE reduction. In the MovieLens 1M dataset, all
but two groups see an average of 0.31 reduction in RMSE.
Also, the number of group members and ratings have almost
no correlation to the improvement in performance, which is
pointed out by fluctuating numbers in rows 2 and 3 of Figure
1. In summary, One-FedCF can improve the recommendation
capability of local models using federated learning.
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C. Baseline Comparisons

Due to the novelty of one-shot federated learning rec-
ommenders, our baselines are federated recommenders with
iterative updates. These federated baseline models are Fe-
dRec with SVD++ [8] (factorization method via batching
and stochastic updates), Two-order FedMMF [28] (masked
matrix factorization via secret sharing), FedGNN [44] (graph
neural network), FedMF [26] (matrix factorization with ho-
momorphic encryption, scores obtained from [44]), FCF [2]
(gradient sharing, scores obtained from [44]), FCMF [27]
(collective matrix factorization with differential privacy and
homomorphic encryption), CLFM-VFL [21] (clustering), an-
other homomorphic encryption based method [42], and Fe-
dRecon [43] (meta learning). We also provide results for non-
private CF using CNMF (single matrix with all users), and the
results from each group’s local CF model prior to the transfer
of information retrieval. The baseline comparison results are
provided in Table II. In this table, we report the averaged
RMSE scores for the initial local CF models and the One-
FedCF improvements across all groups and experiments. Note
that for three of our baselines (CLFM-VFL [21], FedRec [8],
and Homomorphic Encryption [42]) we have included their
score at the lowest reported iteration (communication round).
Since these federated methods are not designed to be one-shot,
their reported best score requires more rounds of iterations.

Table II show that the group’s recommendation performance
improves with One-FedCF. For MovieLens 100K, before the
local models are updated with One-FedCF, the average RMSE
for the groups is 1.00. We can also see that One-FedCF
outperforms the baseline federated recommender systems for
MovieLens 100K. On the MovieLens 1M dataset, One-FedCF
performs slightly worse than the baselines. This can be
attributed to noisier groups with higher RMSE. Since the
reported RMSE for our method is the average of all groups,
the groups with high RMSE bring up the average score. For
example, 30.45% of the groups achieve an RMSE equal to or
better than 0.84, the best baseline on this dataset. Furthermore,
we can attain a mean RMSE of 0.84 if we remove groups with
0.96 RMSE or higher (31.72 % of the groups).

Our RMSE for the MovieLens 1M is close to the baselines,
and we achieve this score with a one-shot method while
the baselines require multi-round client participation. FedRec
(SVD++) needed 100 rounds of communication to achieve
RMSE of 0.84 [8]. The performance of their model at 10
rounds of communication is ∼0.95 and ∼0.90 RMSE for
MovieLens 100K and 1M, respectively [8]. The homomorphic
encryption-based approach reports RMSE of ∼3.40 at the 10th
communication [42] and the clustering approach reports ∼3.8
RMSE at the 1st communication [21] for MovieLens 100K.
Finally, standard CNMF performs better than the federated
approaches. However, this method, which relies on gathering
raw user data, compromises privacy for this level of utility.

V. CONCLUSION

One-FedCF is the first one-shot federated learning approach
for collaborative filtering. We obtain client-specific recommen-

dations with only a single pair of communications between the
server and its clients after a small initial communication. Our
approach utilizes joint non-negative matrix factorization and
transfer of information retrival. We evaluated our method on
two popular recommendation benchmark datasets. Our results
show that One-FedCF improves the predictive capabilities of
local standard CF models, and obtains similar or better scores
with a one-shot approach compared to the state-of-the-art
federated recommendation methods that require multi-round
client participation. Future work includes using local model
selection to filter the groups that can participate in federated
learning, which can improve the overall performance [6].
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