
Semi-supervised Classification of Malware Families
Under Extreme Class Imbalance via
Hierarchical Non-Negative Matrix Factorization
with Automatic Model Selection
MAKSIM E. EREN, Advanced Research in Cyber Systems, LANL, USA
MANISH BHATTARAI, Theoretical Division, LANL, USA
ROBERT J. JOYCE,Machine Learning Research Group, Booz Allen Hamilton, USA
EDWARD RAFF,Machine Learning Research Group, Booz Allen Hamilton, USA
CHARLES NICHOLAS, Department of Computer Science and Electrical Engineering, UMBC, USA
BOIAN S. ALEXANDROV, Theoretical Division, LANL, USA

Identification of the family to which a malware specimen belongs is essential in understanding the behavior of
the malware and developing mitigation strategies. Solutions proposed by prior work, however, are often not
practicable due to the lack of realistic evaluation factors. These factors include learning under class imbalance,
the ability to identify new malware, and the cost of production-quality labeled data. In practice, deployed
models face prominent, rare, and new malware families. At the same time, obtaining a large quantity of
up-to-date labeled malware for training a model can be expensive. In this paper, we address these problems
and propose a novel hierarchical semi-supervised algorithm, which we call the HNMFk Classifier, that can be
used in the early stages of the malware family labeling process. Our method is based on non-negative matrix
factorization with automatic model selection, that is, with an estimation of the number of clusters. With
HNMFk Classifier, we exploit the hierarchical structure of the malware data together with a semi-supervised
setup, which enables us to classify malware families under conditions of extreme class imbalance. Our solution
can perform abstaining predictions, or rejection option, which yields promising results in the identification of
novel malware families and helps with maintaining the performance of the model when a low quantity of
labeled data is used. We perform bulk classification of nearly 2,900 both rare and prominent malware families,
through static analysis, using nearly 388,000 samples from the EMBER-2018 corpus. In our experiments, we
surpass both supervised and semi-supervised baseline models with an F1 score of 0.80.

CCS Concepts: • Security and privacy→Malware and its mitigation; • Computing methodologies→
Semi-supervised learning settings; Non-negative matrix factorization; Topic modeling.

Additional Key Words and Phrases: malware, malware families, non-negative matrix factorization, semi-
supervised, hierarchical, model selection, class imbalance, abstaining prediction, reject-option

ACM Reference Format:
Maksim E. Eren, Manish Bhattarai, Robert J. Joyce, Edward Raff, Charles Nicholas, and Boian S. Alexandrov.
2021. Semi-supervised Classification of Malware Families Under Extreme Class Imbalance via Hierarchical
Non-Negative Matrix Factorization with Automatic Model Selection. In TOPS: ACM Transactions on Privacy
and Security, December 24, 2021, Woodstock, NY . ACM, New York, NY, USA, 26 pages. https://doi.org/10.1145/
xxxxxxx.xxxxxxx

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
TOPS, December 24, 2021, Woodstock, NY
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/xxxxxxx.xxxxxxx

1

https://doi.org/10.1145/xxxxxxx.xxxxxxx
https://doi.org/10.1145/xxxxxxx.xxxxxxx
https://doi.org/10.1145/xxxxxxx.xxxxxxx

TOPS, December 24, 2021, Woodstock, NY Eren et al.

1 INTRODUCTION
The objective of malware detection is to identify a given file as benign or malicious, typically by
using its run-time behavior (dynamic malware analysis) and/or static information (static malware
analysis). In contrast to malware detection, malware family classification assumes that any given
sample is already known to be malicious, and we want to know which family it belongs to [58].
New malware samples are created regularly by threat actors by various techniques, which create
new versions of already existing malware specimens with identical functionality [58]. Malware
analysts regularly go through large quantities of malware samples to understand if a new specimen
in fact belongs to a previously known malware family. Classifying a new malware sample into
a family can reduce the number of files analysts need to examine, and aid in understanding the
behavior of the malware; this is in turn helpful for estimating the severity of the threat, developing
mitigation strategies, and building datasets [58]. The tools that can aid in malware detection and
classification are especially significant now as recent reports point out that malware is one of the
most frequent and costly cyber threats [15].
Approximately half a million new malware specimens are reported daily, which drives the

increased utilization ofMachine learning (ML) based automated security systems to combat malware
[41, 49, 55, 56, 65]. However, the adoption of ML-based solutions against malware threats has been
relatively slow despite the cost savings [36]. Shortcomings in the existing solutions are perhaps
contributing to this problem. The majority of prior research for malware family classification,
over the past two decades, has not sufficiently accounted for core evaluation criteria in their
work including learning under class imbalance, ability to identify new malware, and the cost of
production-quality labeled data [54, 58]. For example, the majority of ML solutions for malware
family classification are unrealistically limited to identifying the top most populous families. This
results in reports of excellent performance on evaluation metrics that do not generalize to the
real world, limited as they have been to the analysis of “easy” malware. At the same time, semi-
supervised learning in the malware classification field has not been widely explored despite its
potential benefits [58]. With the ever-growing quantity of malware, attacks, and their complexities
there is an urgent need to improve existing solutions and their operational architectures to drive
the increased adaption of ML-based solutions.

In this work, we introduce a novel semi-supervised algorithm, named Hierarchical Non-Negative
Matrix Factorization with automatic model selection Classifier (or HNMFk Classifier). The HNMFk
Classifier classifies Windows Portable Executable (PE) format malware specimens (e.g. from the
EMBER-2018 dataset) into families using static malware analysis-based features [9]. Our method
performs bulk classification where the known samples are used as a reference against the unknown
specimens when performing hierarchical clustering, resulting in a model with only an inference
process (i.e. no training). Therefore, in comparison to the traditional ML models which have
separate training (slow) and prediction (fast) steps, our solution can be used outside the real-
time environments, such as early stages in the labeling process of the malware. HNMFk Classifier
performs hierarchical clustering using Non-Negative Matrix Factorization (NMF) with automatic
model selection (NMFk) [3, 4, 6, 7, 23–25, 53], which helps us determine whatever hierarchical
structure exists among the malware specimens. With a semi-supervised setting, we obtain the
ability to perform abstaining predictions (i.e. predicting "I do not know"), in addition to answering
either "Yes" or "No". Specifically, our model incorporates a reject option, where it abstains from
making a prediction (reject). Abstaining predictions aid in detecting novel malware, reduce the
need to include all malware families during factorization to achieve good generalizability to new
malware, and help our model to maintain its performance with a low quantity of labeled data.

2

Semi-supervised Classification of Malware Families TOPS, December 24, 2021, Woodstock, NY

In our experiments, we first use a small subset of the dataset (in a setup that does not reflect the
real world) to understand the effects of using different hyper-parameters in our model, conduct
ablation studies, and to observe the performance of our model with a decreasing quantity of labeled
data. During our (more realistic) larger scale experiments, we use 2,898 classes of malware families
(numbering more than 388,000 samples) with extreme class imbalance, and while including novel
unknown malware samples during classification. Our method surpasses the supervised baseline
models XGBoost and LightGBM [21, 42]. We further extend these baselines with the SelfTrain
algorithm to create strong semi-supervised models, which our approach still outperforms [73]. We
also achieve better classification results compared to our Multilayer Perceptron (MLP) baseline [33].
To the best of our knowledge, we are the first to perform malware family classification over the
EMBER-2018 corpus under realistic conditions such as the inclusion of the rare and novel families
during our experiments, and our target number of family classes is around 29 times more than the
previous work with the largest number of classes [35]. Our contributions include:

• Introducing a novel semi-supervised hierarchical bulk classifier, the HNMFk Classifier, that
can assist analysts early in the malware family labeling process.

• Identifying Windows malware families using static malware analysis-based features, specif-
ically using malware meta-data and PE header features, under extreme class imbalance
conditions.

• Utilizing abstaining prediction to enable our model to help identification of novel malware
families, and maintain its accuracy as the amount of labeled data decreases.

• Achieving higher F1 scores compared to the baseline supervised and semi-supervised learners
which prior work used to report their benchmarks when classifying malware families in the
EMBER-2018 corpus.

The remainder of the paper is organized as follows: we provide a summary of related work in
Section 2. Section 3 includes a description of NMF (Section 3.1), automatic model selection with
NMFk (Section 3.2), and hierarchical NMF (Section 3.3). We then introduce our HNMFk Classifier in
Section 3.4. Section 4 describes the dataset and the features used in our experiments, pre-processing
of the features, and the preparation of the experiments. Section 5 showcases our experimental
results including a performance analysis over a subset of the data and how our model preserves
accuracy under the low quantity of labeled data in Section 5.1. Our results when classifying the
malware families under realistic conditions, and comparison to the baseline models, are shown in
Section 5.2. We justify the parts of our methodology with ablation studies in Section 5.3. Before
concluding, we list potential areas of future work to explore in Section 6.

2 RELATEDWORK
Malware classification is a challenging task, and the quantity and complexity of malware continues
to increase rapidly. This makes the ML-based malware classification an important field of study.
Raff et al. surveys over 200 research articles on ML-based malware analysis [58]. This survey of the
field emphasizes that the standard ML model evaluation technique, where the dataset containing
malware families are divided into training and test sets, is flawed when it comes to the malware
family classification problem in the real-life case, since previously unseen malware families will
continue to appear. To this end, they recommend that the ability to perform abstaining prediction
can assist analysts in identifying novel malware. However, prior work has not widely studied this
open problem area for malware classification. In our experiments, we evaluate the performance
of our solution by including a set of malware families that were not present in the known set.
Additionally, Raff et al. discuss the challenges in malware data gathering, and the expensive and
time-consuming process of file labeling. Their survey found that semi-supervised solutions are not

3

TOPS, December 24, 2021, Woodstock, NY Eren et al.

yet fully explored, although they can help when faced with only a small quantity of labeled data. In
support of this finding, we show that our solution continues to maintain its performance with the
decreasing amount of labeled malware in our small-scale experiment in Section 5.1. Finally, Raff et
al. also point out the relatively small amount of prior work on the problem of class imbalance. This
issue was also emphasized by Nguyen et al. since much prior work has unrealistically evaluated their
solutions over the top most populous malware families [54]. Our study addresses this problem by
including both the rare and prominent classes of malware families during the large-scale experiment
in Section 5.2.

Several previous works have looked at malware family classification, however, they tend to use
only the most common malware families, did not consider novel malware families, or used manually
balanced datasets when reporting their results [1, 11, 27, 32, 40, 47, 63, 71, 75]. In contrast, when
comparing to the baseline models, we report our results when classifying specimens belonging to
the whole ensemble of malware families present in the EMBER-2018 dataset with an imbalanced
setup which also includes novel unknown specimens (Section 5.2). This setup allows our results to
be more like what malware analysts would see in the real world. Several prior works also considered
class imbalance, however, they still targeted a small number of top malware families, and rare
specimens are mapped to a single "others" class [47, 50]. To the best of our knowledge, the most
realistic and the largest malware family classification work was done by Huang et al. [35], which
targeted 100 classes where two of the classes include the one for benign samples and another for the
rare specimens. This type of setup, although it considers class imbalance, limits the classification
capabilities to only a handful of malware families. In contrast, we do not map the rare specimens
into a single class, but rather recognize all 2,898 malware families as individual classes. Furthermore,
supervised methods used in prior work often poorly generalize to rare specimens as also pointed
out by Loi et al [47]. Loi et al. reports that their false positives are heavily represented by the
families collected within the "others" class due to the supervised method’s inability to learn the
patterns of these families from a rare number of specimens. We use a semi-supervised approach,
which has an added benefit of improved generalizability and ability to work with a low quantity
of labeled data compared to the supervised models. A number of these prior works did consider
benign-ware as a class in their analysis [47, 50, 71], but we assume the samples are already known
to be malware and perform only malware family classification. We summarize the mentioned prior
work and show how they compare to our research in Table 1.
Table 1. The comparison of prior and our work in dataset size, number of classes, consideration of imbalanced
data and novel malware families, and the method used. Custom refers to the proprietary datasets, or the
custom build datasets by the authors.

Reference Dataset(s) Dataset Size Num. Classes Imbalanced Data Novel Malware Method
Ours EMBER-2018 [9] 388k 2,898 ✓ ✓ Semi-supervised
[35] Custom 6.5m 100 ✓ — Supervised
[40] Drebin [10] 5k 40 — — Supervised
[71] Malimg [52] & Custom 9k & 10k 25 & 10 — — Supervised
[11] Custom 10k 14 ✓ — Unsupervised
[75] EMBER-2018 [9] 750k 21 — — Supervised
[47] EMBER-2017 [9] 500k 21 ✓ — Supervised
[63] VirusShare [26] 2.7k 12 — — Supervised
[1] Malimg [52] 21k 9 — — Supervised
[50] Custom 115k 8 ✓ ✓ Supervised
[32] Custom 31k 5 — — Supervised

Non-negative Matrix Factorization, or NMF, has also been applied to the malware/benign-ware
classification problem. Ling et al. derive similarity scores of structural patterns extracted with NMF
to detect metamorphic malware (malware with the capability to modify its code during run-time)

4

Semi-supervised Classification of Malware Families TOPS, December 24, 2021, Woodstock, NY

using static analysis features [46]. In their experiments, they choose a fixed number of components
for NMF where the number of components 𝑘 is selected as 𝑘 (𝑛 +𝑚) < 𝑛𝑚. A single application of
NMF misses the patterns hidden in malware sub-groups, and using a fixed number of components
can result in missing important information (under-fitting) or including noise (over-fitting) in the
results. Unlike Ling et al., we perform malware family classification by applying hierarchical NMF
to discover the sub-groups and utilize NMFk as a heuristic to determine the number of components
or clusters. Prior work outside the malware analysis field has demonstrated that hierarchical NMF
can be used to achieve good clustering of the data [29, 66]. Gillis et al. show that using rank-two
factorization at each step (i.e. split the data into two at each stage, 𝑘 = 2) yields good clustering
results when applied with hierarchical NMF [29]. We use hierarchical rank-two NMF in our ablation
studies and show that estimating the number of components viaNMFk produces better classification
results, although extracting two clusters at each factorization does yield good classification results
that surpass our baseline models.

3 METHODS
Our work draws on prior advances in standard and hierarchical NMFmethods, and automatic model
selection. In this section, we give a brief summary for each of these methods, then we introduce our
HNMFk Classifier. The summary of the notations used throughout the paper is provided in Table 2.

Table 2. Summary of the notation styles used in the paper.

Notation Description
𝑥 Scalar
x Vector
X Matrix
XXX Tensor
x𝑖 𝑖th element in the vector
X𝑖 𝑗 Entry located on row 𝑖 and column 𝑗

X𝑖: 𝑖th row
X:𝑗 𝑗th column
XXX::𝑖 𝑖th slice along the third dimension
XXX:::𝑖 𝑖th slice along the fourth dimension
XXXname Superscript name used as an identifier
∗ Dot product

3.1 Non-negative Matrix Factorization (NMF)
NMF is an unsupervised learning method based on a low-rank matrix approximation. NMF repre-
sents an observed non-negative matrix, X ∈ R𝑛×𝑚+ , as a product of two (unknown) non-negative
matrices,W ∈ R𝑛×𝑘+ , and H ∈ R𝑘×𝑚+ , where usually 𝑘 ≪𝑚,𝑛. Here, 𝑛 is the number of samples, and
𝑚 is the number of features. This approximation is performed via non-convex minimization with a
given distance, | |...| |𝑑𝑖𝑠𝑡 , constrained by the non-negativity ofW andH: min| |X𝑖 𝑗−

∑𝑘
𝑠=1 W𝑖𝑠H𝑠 𝑗 | |𝑑𝑖𝑠𝑡 .

NMF relies on a generative statistical model predetermined by the choice of the distance | |...| |𝑑𝑖𝑠𝑡 .
For example, if the Frobenius norm is chosen as a distance, NMF can be treated as a Gaussian
mixture model [28]. If KL-divergence is chosen, we have a generative Poisson model [19], equivalent
to latent Dirichlet allocation under uniform Dirichlet prior [22]. In both cases, the number of latent
features of the superimposed components is equal to the size of the small dimension 𝑘 , and NMF
minimization is equivalent to the expectation-minimization (EM) algorithm. In this probabilistic

5

TOPS, December 24, 2021, Woodstock, NY Eren et al.

interpretation of NMF, the observables are the rows of X generated by latent variables, the rows of
the matrix W, with weights (the basis patterns), represented by the columns of matrix H. Thus,
each row X𝑖: of X is generated from a probability distribution with mean X𝑖: =

∑𝑘
𝑠=1 H𝑖𝑠W𝑠 :.

3.2 Automatic Model Selection: NMFk
The NMF minimization requires prior knowledge of the latent dimensionality, 𝑘 (the number of
latent features), which is usually unavailable. It is known that choosing too small a value of 𝑘
leads to a poor approximation of the observables in X (under-fitting), while if 𝑘 is chosen to be too
large, the extracted features are not easily explainable because they also fit the noise in the data
(over-fitting). In other words, choosing 𝑘 is equivalent to estimating the number of parameters of
the model, which is a difficult and a well-known problem.

In general, the existing partial solutions of this problem are heuristic. Among these solutions is
Automatic Relevance Determination (ARD) [48] which was first modified for Principal Component
Analysis [14], and then for NMF [51, 64]. Another approach is based on an assumed stability of
the NMF solution, and was proposed to identify the number of stable clusters in the observational
matrix X [18]. A recent model selection technique, called NMFk [3], has been successfully used to
decompose the largest collection of human cancer genomes [6]. NMFk integrates classical NMF-
minimization with custom clustering and Silhouette statistics [61], and combines the accuracy of
the minimization and robustness/stability of the NMF solutions, when a bootstrap procedure (i.e.,
generation of a random ensamble of slightly perturbed input matrices) is applied to estimate the
number of latent features, see for example, [7]. Recently, NMFk was applied to a large number
of synthetic datasets with a predetermined number of latent features, and it was demonstrated
its superior performance of correctly estimating 𝑘 in comparison to the other known heuristics
[53]. The superior performance of NMFk method as a model selection was also demonstrated in
identifying mutational genome signatures in a large set of cancer genomes, both in practice [5]
and in large set of synthetic cancer genomes with predetermined number of latent features [37].
In addition, it was shown that NMFk performs better than spherical k-means and other methods
for topic extraction [69]. Our numerical experiments here demonstrate that NMFk performs better
than the predetermined k=2 case. Therefore, we use NMFk as the core factorization method with
automatic model selection needed to extract the right clusters of malware, after the NMF dimension
reduction. In this work, we are making extensive use of NMFk, and for completeness we provide
the pseudocode for it in Algorithm 1 and a description of it, as follows:

(1) Resampling: Based on the observable matrix, X, NMFk creates an ensemble of 𝑀 random
matrices, [XXX::𝑞]𝑞=1,...,𝑀 , with means equal to the original matrix X. Each one of these random
matricesXXX::𝑞 is generated by perturbing the elements of X by a small uniform noise, such
that:XXX𝑖 𝑗𝑞 = X𝑖 𝑗 + 𝛿 , for each 𝑞 = 1, ..., 𝑀 , where 𝛿 is the small error.

(2) NMF minimization: We use the Frobenius norm-based multiplicative updates (MU) algorithm
[44] to explore different numbers of latent features, 𝑘 , in an interval [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥], for each
one of the generated𝑀 random matrices.

(3) Custom clustering: For each 𝑘 ∈ [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥], NMF minimizations of the𝑀 random matrices,
[XXX::𝑞]𝑞=1,...,𝑀 , results in 𝑀 pairs [WWW::𝑘𝑞 ;HHH::𝑘𝑞]𝑞=1,...,𝑀 . Further, NMFk clusters the set of the
𝑀 ∗𝑘 latent features, the columns ofWWW::𝑘𝑞 . The NMFk custom clustering is similar to k-means,
but it holds in each one of the clusters exactly one column from each of the𝑀 NMF solutions.
This constraint is needed since each NMF minimization gives exactly one solutionWWW::𝑘𝑞 with
the same number of columns, 𝑘 . In the clustering, the similarity between the columns is
measured by the cosine similarity metric.

6

Semi-supervised Classification of Malware Families TOPS, December 24, 2021, Woodstock, NY

Algorithm 1 NMFk(X, 𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥 ,𝑀 , 𝑆𝑖𝑙𝑙_𝑡ℎ𝑟 = 0.8)

Require: : X ∈ R𝑛×𝑚+ , 𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥 , 𝑟
1: for 𝑘 in 𝑘𝑚𝑖𝑛 to 𝑘𝑚𝑎𝑥 do ⊲ Start and end process for NMFk
2: for 𝑞 in 1 to𝑀 do ⊲ Num. of Perturbations on each k
3: XXX::𝑞 = Perturb(X) ⊲ Resampling X to create a random ensemble
4: WWW::𝑘𝑞 ,HHH::𝑘𝑞 = NMF(XXX::𝑞 ,k)
5: end for
6: WWW𝑎𝑙𝑙=[WWW::𝑘1,. . . ,WWW::𝑘𝑀] andHHH𝑎𝑙𝑙=[HHH::𝑘1,. . . ,HHH::𝑘𝑀]
7: Ŵ̂ŴW, Ĥ̂ĤH = customCluster(WWW𝑎𝑙𝑙 ,HHH𝑎𝑙𝑙)
8: W̃̃W̃W::𝑘 = medians(Ŵ̂ŴW)
9: HHH

𝑟𝑒𝑔

::𝑘 = NNLS(X,W̃::𝑘) ⊲ Column-wise regression of H with W̃ and column of X
10: s𝑘 = clusterStability(Ŵ̂ŴW)
11: errk = reconstructErr(X,W̃::𝑘 , H𝑟𝑒𝑔

::𝑘) ⊲ Column-wise reconstruction error for L-statistics
12: end for
13: err𝑎𝑙𝑙=[err𝑘𝑚𝑖𝑛 ,. . . ,err𝑘𝑚𝑎𝑥]
14: 𝑘𝑜𝑝𝑡 = PvalueAnalysis(err𝑎𝑙𝑙 ,𝑘𝑚𝑖𝑛 ,𝑘𝑚𝑎𝑥 ,s𝑘 ,𝑆𝑖𝑙𝑙_𝑡ℎ𝑟) ⊲ Predicted k value using Wilcoxon
15: return W̃̃W̃W::𝑘𝑜𝑝𝑡 ,HHH

𝑟𝑒𝑔

::𝑘𝑜𝑝𝑡 , 𝑘
𝑜𝑝𝑡

Ensure: 𝑘 = 𝑘𝑜𝑝𝑡 ,W̃̃W̃W::𝑘𝑜𝑝𝑡 ∈ R𝑛×𝑘+ ,HHH𝑟𝑒𝑔

::𝑘𝑜𝑝𝑡 ∈ R
𝑘×𝑚
+ , X = W̃̃W̃W::𝑘𝑜𝑝𝑡 HHH

𝑟𝑒𝑔

::𝑘𝑜𝑝𝑡

(4) RobustW and H for each 𝑘 : The medians of the clusters, W̃̃W̃W::𝑘 , are the robust solution for each
explored 𝑘 . The corresponding mixing coefficientsHHH𝑟𝑒𝑔

::𝑘 are calculated by regression of X on
W̃̃W̃W::𝑘 .

(5) Cluster stability via Silhouette statistics: NMFk explores the stability of the obtained clusters,
for each 𝑘 , by calculating their Silhouettes [61]. Silhouette statistics quantify the cohesion
and separability of the clusters. The Silhouette values range between [−1, 1], where −1means
an unstable cluster, while +1 means perfect stability.

(6) Reconstruction error: Another metric NMFk uses is the relative reconstruction error, 𝑅 =

| |X−XXX𝑟𝑒𝑐
::𝑘 | |/| |X| |, whereXXX𝑟𝑒𝑐

::𝑘 = W̃̃W̃W::𝑘 ∗HHH𝑟𝑒𝑔

::𝑘 , which measures the accuracy of the reproduction
of initial data by a given solution and the number of latent features 𝑘 .

(7) L-statistics: NMFk uses L-statistics [68] to automatically estimate the number of latent features.
To calculate L-statistics for each 𝑘 , NMFk records the distributions of the column reconstruc-
tion errors, e𝑖 = ∥X:𝑗 −XXX𝑟𝑒𝑐

:𝑗𝑘 ∥/∥X:𝑗 ∥; 𝑗 = 1, ...,𝑚. L-statistics compares the distributions of
column errors for different 𝑘 by a two-sided Wilcoxon rank-sum test [34], which evaluates
whether two samples are taken from the same population.

(8) NMFk final solution: The number of latent features, 𝑘𝑜𝑝𝑡 , is determined as the maximum
number of stable clusters corresponding to a good accuracy of the reconstruction. The
Wilcoxon rank-sum test determines the p-value of the given 𝑘𝑜𝑝𝑡 . NMFk is "looking" for a
distribution of the column errors such that the next distributions (each one with bigger 𝑘) are
statistically the same, and the model is fitting the noise. The L-statistics used in conjunction
with the condition that the minimum Silhouette be greater than 0.80. The threshold of 0.80 is
selected to place the predicted 𝑘𝑜𝑝𝑡 prior to a steep decline in the minimum Silhouette. The
corresponding W̃̃W̃W::𝑘𝑜𝑝𝑡 andHHH

𝑟𝑒𝑔

::𝑘𝑜𝑝𝑡 are the robust solutions for the low-rank factor matrices.
We provide a sample Silhouette score and relative error plot produced by NMFk for two factor-

izations, to demonstrate the selection of 𝑘 , in Figure 1. The presented NMFk framework estimates
the latent feature count based on two criteria, namely a high minimum Silhouette score, and a low

7

TOPS, December 24, 2021, Woodstock, NY Eren et al.

relative reconstruction error, which corresponds to a stable NMF solution. The number of features
with lower minimum Silhouette scores correspond to overlapping clusters or scattered clusters.
On the other hand, the relative reconstruction error decreases monotonically with the number of
latent features. This decrease is more prominent up to the estimated number of topics followed by
a reduced change in the error. As observed in Figure 1, with the further increase in the number of
latent features past the estimated 𝑘 , there is a sudden decline in the Silhouette score due to the
over-fitting phenomenon as the model tends to fit noise.

X(n,615) X(d,615)

Fig. 1. Sample Silhouette and relative error graphs obtained from NMFk is shown for the matrices X(𝑛,615)

and X(𝑑,615) which are formed using 1,000 malware specimens from 10 families. X(𝑑,615) consist of samples
extracted from a single cluster after the the first NMFk procedure on X(𝑛,615) .

3.3 Hierarchical Non-Negative Matrix Factorization
The NMF and Hierarchical NMF [31, 43] strategies have been used successfully for document
clustering [20, 72], and topic modeling [30, 62, 70]. Here we use NMFk to compute clusters of
malware specimens by applying it in a hierarchical manner, where successive node expansions
focus on the subset of X obtained from the parent cluster. Here the clusters are determined using
the columns ofW viaW-clustering that cluster the specimens’ coordinates in the reduced space (i.e.
the rows of the matrix W) [68], a topic we address in Section 3.4. When going deeper in the graph
towards the leaves, we investigate different characteristics of the specimens in the same group, and
achieve better separability of the malware specimens.
Let us consider a simple example from hierarchical document clustering. We assume three

well-curated clusters in a text corpus of news articles about sports, technology, and the economy. If
we cluster these documents with NMFk andW-clustering we can obtain three "super" clusters for
sports, technology, and the economy. We can further divide the cluster containing sport articles
into sub-topics, such as soccer, football, tennis, skiing etc. by applying additional iterations of NMFk.
In our analysis, we choose to select back the specimens corresponding to each one of the super
clusters and apply NMFk again. This is the idea behind the hierarchical approach, and consequently
a hierarchical approach is used in the HNMFk Classifier to further separate more heterogeneous
clusters based on the known (or labeled) malware instances.

In our semi-supervised setting, the experimental setup contains data with labeled (known) and
unlabeled (unknown) malware specimens. This allows us to choose a scoring function, not based on
information gain (such as normalized discounted cumulative gain from information retrieval [39])
[43] or a fixed threshold using the number of specimens in the cluster [31] to determine which
node to take further. Instead, we use a cluster uniformity score that measures the stability of the

8

Semi-supervised Classification of Malware Families TOPS, December 24, 2021, Woodstock, NY

cluster, based on the known specimens in the cluster, as the node expansion criteria for a cluster.
We will further explain how we calculate the cluster uniformity score in Section 3.4. In general, the
application of NMFk to semi-supervised data will place into each of the final clusters both labeled
and unlabeled malware specimens. This allows us to continue to build the hierarchical graph until
the further expansion of a particular node is stopped if no unlabeled or labeled samples are present
in this node, or if the cluster uniformity score calculated based on the known samples passes the
provided threshold.

We provide an example visualization of the latent factors obtained from NMFk with a hierarchical
setting in Figure 2. Here, we apply dimensionality reduction using t-SNE [67] to each latent factor
W to plot the clusters. Each point in the embedding of W is colored based on the family to which
the specimen belongs. Here the clusters are expanded until all the samples in the cluster belong to
a single class. The t-SNE visualization show how the hierarchical clusters of malware families are
formed, and how the clusters become more homogeneous as we perform additional applications of
NMFk.

W(n,kopt)

First NMFk

W(d,kopt) W(g,kopt)

W(a,kopt) W(c,kopt) W(f,kopt) W(h,kopt)

W(j,kopt)W(e,kopt)W(b,kopt)

X(n,kopt) X(d,kopt) X(g,kopt)

X(a,kopt) X(c,kopt)

X(b,kopt) X(e,kopt)

X(f,kopt)

X(j,kopt)

X(h,kopt)

Fig. 2. The path of the hierarchical graph formed by the NMFk is shown using 1,000 malware specimens
containing a total of 10 malware families. After each factorization, the clustering is visualized by reducing the
dimensions of W using t-SNE. Dashed arrows are used to indicate the existence of an another sub-tree from
the node. Since we are obtaining 𝑘𝑜𝑝𝑡𝑖 subsets of specimens from current X at each stage, 𝑛 > 𝑎 ≥ 𝑏 ≥ 𝑐 ≥
𝑑 > 𝑒 ≥ 𝑓 ≥ 𝑔 > 𝑗 ≥ ℎ.

3.4 HNMFk Classifier
In this section, we describe how our NMFk based hierarchical bulk classifier works. Our model
recursively analyzes the known and unknown specimens, factorizing only the subset of data from
the previous cluster at each iteration.

The hyper-parameters of our model are the hyper-parameters needed for NMFk, and the cluster
uniformity threshold 𝑡 . The user specifies the maximum number of iterations for NMF, number
of perturbations, the error rate, and the range to search for the 𝑘 heuristic. When performing
classification, HNMFk Classifier is provided with the data matrix X ∈ R𝑛×𝑚+ , where 𝑛 is the number
of malware samples and𝑚 is the number of features, which includes both the known and unknown
specimens that we want to perform inference on. We also provide a vector y containing the labels
for each specimen. The 𝑖th sample, where 1 ≥ 𝑖 ≥ 𝑛, has the family label y𝑖 ∈ {−1, 1, 2, . . . ,𝐶} for a
dataset with 𝐶 classes. Notice that the unknown specimens are labeled with −1.

9

TOPS, December 24, 2021, Woodstock, NY Eren et al.

Our algorithm proceeds with the first factorization, given X, y, the specified NMFk hyper-
parameters, and cluster uniformity threshold 𝑡 as input. After NMFk identifies the number of
clusters 𝑘𝑜𝑝𝑡 , we obtain the latent factors W ∈ R𝑛×𝑘𝑜𝑝𝑡+ and H ∈ R𝑘𝑜𝑝𝑡×𝑚+ . HNMFk Classifier uses W
latent factor to perform clustering, which we callW-clustering. Here each 𝑛 sample is assigned to
one of 𝑘𝑜𝑝𝑡 clusters by taking the maximum value along the second axis:

cluster(𝑖) = argmax
0≤ 𝑗≤𝑘𝑜𝑝𝑡

(W𝑖 𝑗) (1)

where cluster(𝑖) returns the cluster assignment of a given sample 𝑖 . If a cluster 𝑐 , where 𝑐 ∈
{1, 2, . . . , 𝑘𝑜𝑝𝑡 }, does not contain any known samples, all the unknown specimens in the cluster
𝑐 are predicted abstaining. If a cluster 𝑐 only has known specimens, we do not proceed with the
samples in that cluster further, as there are no more unknown specimens to label. On the other
hand, if a cluster 𝑐 has a mix of known and unknown samples, we calculate the uniformity of the
cluster based on the known specimens. Our cluster uniformity score is defined by the fraction of
the most dominant class present in the cluster 𝑐:

𝑈 𝑐 =
|max (𝑐𝑘𝑛𝑜𝑤𝑛) |

|𝑐𝑘𝑛𝑜𝑤𝑛 |
(2)

where𝑈 𝑐 is the cluster uniformity score for the cluster 𝑐 , |𝑐𝑘𝑛𝑜𝑤𝑛 | is the number of known samples
in the cluster, and the numerator is the number of samples that belongs to the most dominant
known class in 𝑐 .𝑈 𝑐 specifies how uniform the given cluster 𝑐 is based on the labeled data.

If the cluster uniformity score𝑈 𝑐 is more than the threshold 𝑡 , thenwe proceed to assign unknown
specimens family labels in a semi-supervised fashion. That is, all the unknown samples are predicted
to be the most dominant class in the cluster based on the known specimens (max (𝑐𝑘𝑛𝑜𝑤𝑛)). If,
however, the cluster uniformity score is less than the threshold 𝑡 for a given cluster 𝑐 , we form a
new X

′ ∈ R |𝑐 |×𝑚
+ that only contains the malware specimens present in that cluster (both known

and unknown). Finally, X′ is factorized again with NMFk. In the proceeding NMFk, 𝑘 search range
selected to be [1, 𝑘𝑜𝑝𝑡] with the step-size of 1. The above procedure is repeated until all the unknown
samples are classified. In this setting, our leaf nodes in the hierarchical graph are the positions
where at least one of the following exit conditions are met: no known specimens in the cluster
(abstaining prediction), no unknown specimens are in the cluster (nothing to classify), or 𝑈 𝑐 ≥ 𝑡 is
true and we classify all samples in the cluster in a semi-supervised manner. The aforementioned
procedure is summarized in Algorithm 2 and Figure 3.
In summary, looking at Figure 3 we can conclude that HNMFk Classifier is a wrapper to the

NMFk algorithm, which exploits NMFk’s ability to estimate the number of latent components,
and performs factorization recursively to create a hierarchical graph where the semi-supervised
classification is done at each leaf node. When our model finishes classification, any unknown
samples that are left with the label −1 are said to be abstaining predictions, i.e. the model does not
know their classes or rejects to make a prediction.

We also provide a toy example illustrating how HNMFk Classifier works in Figure 4. In this figure,
we have a matrix X ∈ IR9 x 3 (9 malware samples with 3 features). After factorizing X with NMFk,
we get the latent factors W ∈ R9×𝑘𝑜𝑝𝑡+ and H ∈ R𝑘𝑜𝑝𝑡×3+ , with the estimated number of clusters
𝑘𝑜𝑝𝑡 = 4. Samples 5 and 6 are assigned to cluster 2. Sample 6, an unknown sample, is classified
as family 𝑎. Cluster 3 contains only 2 unknown samples. Therefore, we classify samples 2 and 7
as abstaining. Cluster 1 contains the sample 1 (family 𝑎), 3 (family 𝑏), and 8 (unknown). Because
this cluster has samples belonging to two different families (assuming that our cluster uniformity
threshold is 𝑡 = 1, i.e. threshold is met only when all the known samples in the cluster belongs to
a single class), we create a new subset with these samples, such that X′ ∈ R3×3+ . We apply NMFk

10

Semi-supervised Classification of Malware Families TOPS, December 24, 2021, Woodstock, NY

X::1
Feature 1

Feature 1

Feature 2 Feature 3

Begin with
Mode 1

Unfolding

Wopt

Hopt

Cluster
malware families

cluster quality >
threshold?

Subset in X corresponding to
samples in the cluster

predict the unknown
based on the known

?

1

2

3

kopt
?

?

?

for each clusters kopt

No

NMFk

Yes

Current X

argmax
along second

axis of W
If no known

samples in the cluster,
predict abstaining

X::2
X::3

X

1

2 3

4

5
X::1 X::3 X::2

Fig. 3. Overview of the HNMFk Classifier framework. NMFk is wrapped around an hierarchical (or recursive)
semi-supervised architecture. Begin with the initial data X (1). Use NMFk to estimate the number of clusters
and obtain the latent factorW (2). Extract the clusters via argmax along the second axis ofW (3). For each
cluster, perform abstaining prediction if no known samples are present in the cluster, or predict the unknown
specimens in a semi-supervised manner if the cluster uniformity score is satisfied (4). Form the new matrices
X with the specimens from the clusters that does not meet the cluster uniformity threshold (5). For each new
X, apply NMFk again (2).

again on X
′ , which estimates 𝑘𝑜𝑝𝑡 = 2, and sample 8 is classified as family 𝑏. When all samples are

predicted, the computation is complete.

4 DATASET
Collection of malware data has challenges such as copyright issues, labeling difficulty, and secu-
rity precautions. Therefore, compared to other ML fields with abundant data (such as text and
images), the malware identification community has lacked a benchmark dataset sufficient to enable
reproducibility and comparison of new methods. To address this issue, Anderson et al. released
the EMBER-2018 dataset [8], which we use in our experiments. Since its release, EMBER-2018 has
become a popular benchmark dataset for ML-based malware analysis methods.

EMBER-2018 is a collection of PE header and meta-data information extracted from 1.1 million
benign and malicious Microsoft Windows Portable executable binaries, out of which 800,000 have
labels. The family labels in the dataset are obtained using AVClass. Therefore, classes are weakly
labeled as AVClass contains inaccuracies in family labeling [76]. AVClass does not filter out all
generic family names, it can be inconsistent in its use of aliases for malware families, and errors in
any antivirus signatures can effect AVClass’ accuracy. Despite the imperfect labeling, AVClass is
currently the best available option for obtaining a large quantity of malware family labels.

Throughout our analysis, we only use the malware instances for which AVClass could determine
a family label. The final dataset includes a default train and test split, where the training set consists
of over 289,000 specimens from 2,730 malware families, and the test portion of the dataset includes
around 99,000 samples from 916 malware families. The details of the dataset sample and family
statistics are shown in Table 3. In this paper, we refer to the training set as known data, and testing
set as unknown data in the context of semi-supervised learning and bulk classification (i.e. we use
the known data as a reference to label the unknown data).

11

TOPS, December 24, 2021, Woodstock, NY Eren et al.

Algorithm 2 HNMFk Classifier(X, y, 𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥 , 𝑟 , 𝑡) - Semi-supervised Hierarchical Classifier
1: known_samples= argwhere(y != -1)
2: unknown_samples = argwhere(y == -1)
3: W, H, 𝑘𝑜𝑝𝑡 = NMFk(X, 𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥 , 𝑟)
4: clusters = argmax(W, axis=1)
5: for cluster in clusters do ⊲ iterate over 𝑘𝑜𝑝𝑡 clusters
6: known_samples_c = intersect(known_samples, cluster)
7: unknown_samples_c = intersect(unknown_samples, cluster)
8: if len(known_samples_c) == 0 then ⊲ no unknown samples to make prediction
9: continue
10: end if
11: if len(unknown_samples_c) == 0 then ⊲ abstaining prediction
12: continue
13: end if
14: class_counts = count(known_samples_c)
15: cluster_uniformity = max(class_counts) / sum(class_counts)
16: if cluster_uniformity < t then
17: X_new = X[cluster] ⊲ subset in X, samples in the cluster
18: y_new = y[cluster] ⊲ labels for the samples in the cluster
19: 𝑘𝑚𝑎𝑥 = min(𝑘𝑜𝑝𝑡+1, min(X.shape))
20: y[cluster] = HNMFk_Classifier(X_new, y_new, 𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥 , r, t)
21: else
22: classify_label = max(class_counts) ⊲ dominant known class in the cluster
23: y[unknown_samples_c] = classify_label
24: end if
25: end for
26: return y

Table 3. EMBER-2018 dataset default train and test set split and malware family and sample counts are
displayed. Novel families for the known (or train) set are the families that only exist in the training set. The
novel families for unknown (or test) set are the families that only exist in the test set (i.e. we do not see these
families during inference, or we do not have known specimens for reference). Min Family and Max Family
columns show the minimum and maximum number of samples exist for a family in the dataset. For instance,
there are malware families with single sample in both known and unknown sets. Samples/Family column
shows the average number of samples per family. We used all the malware instances with a family label from
EMBER-2018, which contains the rare and novel families, making the classification task complex.

Set Families Samples Novel Families Novel Samples Min Family Max Family Samples/Family
Known (Train) 2,730 289,026 1,982 11,157 1 16,689 105.87
Unknown (Test) 916 99,216 168 363 1 19,260 315.53

One advantage of using the EMBER-2018 dataset is that the distribution of the family classes
resembles real-world cases. The known portion of the dataset contains malware families that do
not exist in the unknown portion of the data. Similarly, the unknown set contains novel malware
families, or the malware families that do not exist in the known set. This is also shown in Table 3.
1,982 of the malware families, making over 11 thousand samples, are not seen again in the unknown
set. There are 168 novel families, forming 363 samples, that we do not have any reference of in the
known set. At the same time, malware family classes in EMBER-2018 are extremely imbalanced.

12

Semi-supervised Classification of Malware Families TOPS, December 24, 2021, Woodstock, NY

Feature 1 Feature 2 Feature 3

Sa
m

pl
es

kopt=4

X
.05

.05

.1

.1

.05 .03 .02.9

.1 .2 .1.6

.2 .2 .2.4

.1 .1 .3

.3 .2

.5

.4

.2 .2 .5

.25.2 .25.3

.1 .05.8

.2 .05 .7

1

2

3

4

5

6

7

8

9

Sa
m

pl
es

1

2

3

4

5

6

7

8

9

W

Feature 1 Feature 2 Feature 3

Continue NMFk for 1, 3 and 8 Classify 6 as Classify 2 and 7 abstaining Classify 9 as

Family a Family b Unknown

Feature 1 Feature 2 Feature 3

1

3

8Sa
m

pl
es

Sa
m

pl
es

.1

.2

.3

.81

3

8

.9

.4

Feature 1 Feature 2 Feature 3

Classify 8 as

.6

X'

H

W'
H'

kopt=4

kopt=2

kopt=2

Fig. 4. A toy demonstration of how HNMFk Classifier operates in a hierarchical fashion, and how the semi-
supervised classification of the unknown malware specimens is performed via the clustering on the latent𝑊
matrices using the known samples.

Figure 5 shows the distribution of the malware families for both the known and unknown set. For
instance, there are malware families that consist of single samples, including the specimens from
the novel families (which can also be seen at the right side of Figure 5 with red-dashed line). In
fact, the majority of the malware families in the dataset consist of less than 10 samples. We next
proceed to the pre-processing of the features to remove the outliers.

Malware Family
100
101
102
103
104

C
ou

nt

Set
Known
Unknown

Fig. 5. Distribution of the malware families in EMBER-2018 dataset. Count of family classes are shown in log
scale for both the known and unknown set. Both the known and unknown sets has an extremely imbalanced
classes of malware families, and the unknown set of contains set of novel malware families.

4.1 Pre-processing
During our experiments, we represent each file in the dataset as a collection of features from both
general file meta-data as well as PE header information. Each of the features are concatenated
horizontally to form the final features matrix. This is equivalent to forming an 11 dimensional
tensor, with the dimensions Samples × Feature 1 × Feature 2 × ... × Feature 10, and taking the mode-1
unfolding of the tensor. Specifically, we use the following features:

13

TOPS, December 24, 2021, Woodstock, NY Eren et al.

(1) byte histogram: a vector of size 256 where each entry represents the number of times a certain
byte occurs in the file.

(2) byte entropy: normalized joint distribution of entropy and byte values.
(3) print table distribution: distribution of characters obtained from printable strings with mini-

mum of 5 consecutive printable characters in the binary.
(4) strings entropy: measure of randomness of printable strings present in the malware.
(5) number of strings: number of printable strings.
(6) file size: size of the binary in bytes.
(7) number of exports: number of functions exported by the malware.
(8) number of imports: number of functions imported by the malware.
(9) code size: size of .text or code section of the PE header in bytes.
(10) number of sections: number of sections present in PE header.
Our dataset consists of heterogeneous features containing outlier values. Since NMF is susceptible

to outliers (extremely large or small values in the columns of initial data), see for example [74], we
normalize the features used in our analysis. This normalization prevents the larger values in the
columns of the initial data to bias/skew the NMF optimization procedure by favorizing some of the
columns in X, see details in Ref.[37]. Note that the case of outliers affecting NMF optimization is
distinct from the characteristics makeup of a novel malware family: After the normalization, the
novelty of the malware belonging to unknown (or never seen before) family reflects on the shape of
its latent signature (the columns of matrixW). A possible classification of malware families based
on their latent signatures will be discussed elsewhere.
In our normalization, Z-scores are used to remap the outliers that are more than or less than 3

standard deviations away from the mean. These outliers are mapped to the point that is exactly 3
standard deviations away from the mean. In Figure 6, we show the histogram of feature values
for pre- and post-processing. The normalization was most prominent among the features byte
histogram, byte entropy, and print table distribution. Finally, we scale the values to be between 0
and 1.

106 108

103

107
Byte Hist.

106 108

103

107
Byte Entropy

105 107

102

105

Print Table Dist.

5 × 100 6 × 100

102

103

104

Strings Entropy

101 103

103

105 Num. Strings

104 106
102

103

104

File Size

101 102

102

105
Num. Exports

101 102

103

105 Num. Imports

107 108

102

105
Code Size

100 101

103

104

105 Num. Sections

Features
Pre-process Post-process

Fig. 6. Static malware analysis based features from PE header files and malware meta-data used in the
analysis shown before and after the mapping of the outliers, defined by 𝑍 = 3 statistical score, for both
training (known specimens) and test sets (unknown specimens).

4.2 Preparation of the Experiments
We conduct our experiments using two different dataset setups. With the first setup, we use a
subset of data utilizing only the top populous malware families to perform performance analysis
of our method under different conditions in Section 5.1. This setup is also used in our ablation
studies in Section 5.3. We use a smaller subset of the data to reduce the computation time of our
experiments and to enable testing of our method under number of different settings. Although
this setup allows us to gain insights into how our method works, it does not yield results that can

14

Semi-supervised Classification of Malware Families TOPS, December 24, 2021, Woodstock, NY

generalize to real-world. Therefore, in Section 5.2 we test our method under realistic conditions
and compare to other baseline models.
In our small dataset setup, we chose the 10 most populous malware families in the entire

dataset (adposhel, emotet, fareit, installmonster, ramnit, sality, vtflooder, xtrat, zbot, zusy). We
then randomly sample the dataset to extract 1,000 specimens for each family without replacement,
forming a small subset of the dataset with 10,000 samples. We form 10 of these random subsets, and
apply our experiments on each of the 10 subsets, to see if our results are statistically significant. In
our large scale analysis, we used all of the malware families present in the EMBER-2018 dataset,
and use the default split present in EMBER-2018 to separate the known and unknown specimens.

4.3 System Configuration
We ran the experiments on a High Performance Computing (HPC) cluster named Dracarys, located
at the Los Alamos National Laboratory (LANL). Dracarys uses the Intel(R) Xeon(R) Platinum 8280M
processor, which is a cascade lake architecture operating at a clock speed of 2.70GHz. There are 28
physical CPU cores which are multi-threaded to 56 threads providing 112 virtual processors, and
total physical RAM of 2.71 TeraBytes (TBs). The system also comprises 3 NVIDIA Quadro RTX8000
GPUs with VRAM memory of 48 GigaBytes (GBs) each.

5 EXPERIMENTS
We perform experiments targeting the following tasks: analyzing the performance of our model
with different hyper-parameters and, as the amount of known malware decreases, and testing our
method under realistic conditions. We compare our results to those obtained by the baseline models,
taking advantage of the abstaining prediction ability to detect novel malware, and using ablation
studies to justify the need for the parts of our model.

5.1 Methodology Performance Analysis
In this section we look at the performance of our method for different cluster uniformity thresholds,
unknown malware fractions, and NMFk hyper-parameter selections. Similar to prior work, we use
a small subset of the dataset (an unrealistic data setup), as described in Section 4.2, during our
analysis in this section. Each experiment is run 10 times on different random subsets of the dataset,
to verify if the results are statistically significant using hypothesis testing. To this end, we report
our results with a 95% confidence interval (CI) for each experiment.

5.1.1 Cluster Uniformity Threshold. We use a threshold value 𝑡 , which measures how many labeled
(known) specimens are needed to claim that all unknown specimens in this cluster are uniform,
that is, from the same labeled malware family. This threshold allows us to determine whether to
proceed further with clustering of the current data in the node with additional applications of
NMFk. The left side of Figure 7 shows the percent of abstaining predictions, execution time, and
the maximum graph depth (maximum number of edges between the root and a leaf node) as the
cluster uniformity threshold 𝑡 is changed. As 𝑡 increases, the percent of abstaining predictions
rises, since the solution needs increasingly cleaner clusters. This reduces the number of specimens
that we can classify with high certainty, and results in a higher number of abstaining predictions.
The maximum graph depth also increases, alongside the higher execution time, since achieving
cleaner clusters requires an increased number of separations. We show how the F1 score changes
for each malware family in Figure 8. As the cluster threshold increases, the performance of the
model improves for each malware family, and the results become more certain, as indicated by the
narrowing confidence interval. Although the computation time increases, a higher threshold yields

15

TOPS, December 24, 2021, Woodstock, NY Eren et al.

better inference results. Therefore, during the experiments in Section 5.2 we set the threshold to be
𝑡 = 1.

0

1

2

3

A
bs

ta
in

in
g

Sa
m

pl
es

 (%
)

0

10

20

0

5000

10000

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

5000

10000

15000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cluster Uniformity Threshold

0

5

10

M
ax

im
um

 H
ie

ra
rc

hi
ca

l D
ep

th

0.
05 0.

1
0.

15 0.
2

0.
25 0.

3
0.

35 0.
4

0.
45 0.

5
0.

55 0.
6

0.
65 0.

7
0.

75 0.
8

0.
85 0.

9
0.

95

Unknown Malware Fraction

7.5

10.0

12.5

Fig. 7. HNMFk Classifier’s performance for abstaining prediction, execution time, and the maximum depth
is shown as the cluster uniformity and the unknown malware fraction changes.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cluster Uniformity Threshold

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Av
er

ag
e

F1
 S

co
re

Malware Family
adposhel
emotet

fareit
installmonster

ramnit
sality

vtflooder
xtrat

zbot
zusy

Fig. 8. The performance of HNMFk Classifier is measured with the F1 score as the cluster uniformity threshold
is changed. Each experiment is performed on 10 different random subset of the EMBER-2018 dataset, average
is plotted with the 95% confidence interval.

5.1.2 Unknown Malware Fraction. The process of labeling malware is expensive [58]; therefore,
semi-supervised learning can help with obtaining good performance results when using a low
quantity of labeled data. We investigate this by looking at how our model performs as the unknown
malware fraction increases. Figure 9 displays the average F1 score for each malware family as
the unknown malware fraction rises. Since our model can perform abstaining predictions, as the
unknown malware fraction increases, the performance of the model remains relatively stable.

16

Semi-supervised Classification of Malware Families TOPS, December 24, 2021, Woodstock, NY

A lesser number of known malware samples means that our model to have a lesser number of
references that can be used to classify the unknown samples. This results in higher number of
abstaining predictions which in return helps with maintaining the performance (this can be seen
at the right top of Figure 7). In Figure 9, we can also see that two malware families, Sality and
Ramnit, yield lower F1 scores in comparison to the other families. Possible reasons for diminished
performance on Sality and Ramnit include the fact that they are both “file infectors” (a category of
malware which copies its code into other executables). It may be more difficult to classify this type
of malware using the selected features, since some of the original PE metadata/file contents may
not be changed when a file is infected.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Unknown Malware Fraction

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

F1
 S

co
re

Malware Family
adposhel
emotet

fareit
installmonster

ramnit
sality

vtflooder
xtrat

zbot
zusy

Fig. 9. The performance of the HNMFk Classsifer, measured with F1 score, remains relatively stable for each
malware family as the unknown malware fraction increases (or the number of known samples decreases).
Each experiment is run on 10 random subset of the dataset.

The average F1 scores obtained by the HNMFk Classifier with the changing unknown specimen
fraction are also compared to the vanilla baseline models in Figure 10. Here, the unknown malware
fraction point where the HNMFk Classifier begins to outperform a baseline model is shown with a
vertical line. We use the supervised baseline models XGBoost and LightGBM, and a semi-supervised
model LightGBM+SelfTrain. These traditional ML models do not have the ability to perform abstain-
ing predictions. Therefore, they rely on an abundance of labeled data to perform well during testing.
The HNMFk Classifier surpasses the average F1 score of LightGBM+SelfTrain at 0.64 unknown
malware fraction. XGBoost is outperformed at unknown malware fraction 0.94, and LightGBM at
0.97. We also note that these models continue to perform relatively well as the known malware
fraction drops because we are using a small and balanced subset of the dataset which contains
the most populous malware families, making the problem easier. We will be further analyzing the
performance of the baseline models and our approach with a realistic dataset setup in Section 5.2.
The experiments under real-world like setup will reveal that the performance difference between
the baseline models and our method is even greater.

5.1.3 NMFk Hyper-parameter Analysis. In addition to the cluster uniformity threshold hyper-
parameter of the HNMFk Classifier, we also provide our model with the hyper-parameters of NMFk.
In Figures 11 and 12 we show that changes in the number of perturbations and NMF iterations do
not have a large effect on the performance of our method. Figure 13 displays the change in F1 score
as the maximum 𝑘 is increased for the 𝑘 search of first NMFk. In this experiment, we choose the 𝑘
step-size of 1, and begin searching at 𝑘 = 1. The performance of the model continues to increase as
the predicted 𝑘 is approached. After the estimated 𝑘𝑜𝑝𝑡 is reached, the F1 score does not change,
since we will always choose the same 𝑘𝑜𝑝𝑡 in the first NMFk. These experiments indicate that we
need to choose the initial 𝑘 search range to be large enough to obtain a good initial clustering.

17

TOPS, December 24, 2021, Woodstock, NY Eren et al.

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

0.6
5

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

Unknown Malware Fraction

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Av
er

ag
e

F1
 S

co
re

Classifier
LightGBM (supervised)
XGBoost (supervised)

HNMFk Classifier (semi-supervised)
LightGBM+SelfTrain (semi-supervised)

Fig. 10. Average F1 score when classifying 10 malware families is compared to other baseline models as the
fraction of unknown malware increases. Each experiment is run on 10 random subset of the dataset.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Num. of NMFk Perturbations

0.914

0.916

0.918

0.920

0.922

0.924

0.926

0.928

0.930

F1
 S

co
re

Fig. 11. Change in performance is
measured using F1 score as the
number of NMFk perturbations
increased. It can be seen the ef-
fect to the overall performance as
this hyper-parameter is changed
is low, with average average F1
score of .92 and confidence inter-
val .001. The difference between
the highest and lowest point is
.032.

25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

45
0

47
5

50
0

52
5

55
0

57
5

60
0

Num. of NMFk Iterations

0.912

0.914

0.916

0.918

0.920

0.922

0.924

0.926

0.928

F1
 S

co
re

Fig. 12. Change in performance is
measured using F1 score as the
number of NMFk iterations in-
creased. It can be seen the ef-
fect to the overall performance as
this hyper-parameter is changed
is low, with average average F1
score of .91 and confidence inter-
val .0008. The difference between
the highest and lowest point is
.031.

5 10 15 20 25 30 35 40 45 50 55 60 65 70

k Range Max

0.890

0.895

0.900

0.905

0.910

0.915

0.920

0.925

0.930

F1
 S

co
re

Fig. 13. Change in performance
is measured using F1 score as the
maximum k for of NMFk k search
is increased. Here, k range is 1
through the maximum k value,
with the step size of 1. It can be
seen as the maximum k increases,
the performance of the model im-
proves. After the estimated k, in-
creasing the value further does
not change the performance.

5.2 Malware Family Classification Under Realistic Conditions
Now that we have gained understanding into how our method performs with different hyper-
parameters and settings, we will next use the more realistic data setup to show how our approach
fares far better under real-world constraints. When ML-based malware defense and analysis
solutions are used outside the research environment, they often encounter extreme class imbalance.
At the same time, analysts do not have access to all possible malware samples, and threat actors
continuously develop new pieces of malware. Therefore, ML-based systems are exposed to malware
that has never been seen before. To this end, we analyze the performance of our method under a
real-world like setting by exposing our model to prominent, rare, and novel malware families. In
this section, we utilize all the malware families present in the EMBER-2018 dataset to conduct our
experiment, as described in Section 4.2. The performance of HNMFk Classifier is compared to the
supervised baseline models LightGBM, XGBoost, and MLP. We also create strong semi-supervised
versions of LightGBM and XGBoost by wrapping them with SelfTrain. During the hyper-parameter
tuning of LightGBM and XGBoost, we use the Python package Optuna to get the hyper-parameter
suggestions for each trial [2], and for the construction of an optimal neural net-based classifier,MLP,

18

Semi-supervised Classification of Malware Families TOPS, December 24, 2021, Woodstock, NY

we employed a HyperBand Tuner as an accelerated tuning algorithm [45]. The hyper-parameters
of LightGBM was tuned using a stratified 20% subset of the training set over 65 trials and 3-fold
stratified cross-validation. We used a stratified subset of the dataset because using the entire dataset
for this model resulted in each trial taking approximately 2 days during tuning (it would have taken
approximately 100 days to complete 50 trials for tuning). We used the objective multiclass with a
500 maximum number of iterations, and gbdt boosting type. The following hyper-parameters were
tuned (ranges are shown in parenthesis): min_data_in_leaf (5-100 in log scale), max_depth (2-7),
bagging_freq (0-5), bagging_fraction (.5-1.0), learning_rate (.001-.1 in log scale), and feature_fraction
(.1-.7). For LightGBM, we have also tried the recommended hyper-parameters from the EMBER-2018
dataset [8], which did not yield better results when compared to our best trained model.

XGBoost was tuned using the entire dataset over 25 trials with stratified 3 fold cross-validation.
We used maximum boosting rounds of 500 with the multi-class softmax objective function. The
following hyper-parameters were tuned: max_depth (2-10), eta (.003-0.5 in log scale), subsample
(.2-.7), rounds (10-300), colsample_bytree (.3-1.0), colsample_bylevel (.5-1.0), and lambda (.1-2.0).

The HyperBand framework has been widely used in the deep learning community for estimating
the optimal parameters in a short amount of time. HyperBand is a variation of random search
with explore-exploit theory to estimate best configurations within a given allocated time. The
hyper-parameters utilized for model selection of the MLP were the number of depths of the neural
network (1-10), number of nodes on each layer (1024-16000), optimization algorithm (SGD, Adam,
RmsProp), and the learning rate (1e-4, 1e-1). We employed early stopping criteria on validation loss
to avoid over-fitting.
Since our method’s performance does not change dramatically with the change in hyper-

parameters as shown in Section 5.1.3, we choose the hyper-parameters without tuning with 20
perturbations, 500 number of iterations, and k-range to be 1 through 100 with the step-size of
1 for the first iteration. We did verify, by inspecting the plot of the initial NMFk (similar to the
Figure 1), that the estimated number of components was less than 100. If it had been close to
100, we would have re-started our experiment with a higher range. Finally, we chose the cluster
uniformity threshold 𝑡 to be 1, i.e. each cluster should have a single known class to be able to
perform semi-supervised classification.
Table 4 compares our method to the baseline models. The HNMFk Classifier, a semi-supervised

solution, outperforms all of the state-of-the-art models, which we used as baselines, with an F1
score of 0.80. Our approach outperforms the supervised methods, with the potential benefit of
better generalizability and the need for less labeled data, due to the semi-supervised setting. We also
surpass the strong semi-supervised version of XGBoost with SelfTrain. Notice that these baseline
models were used to report benchmarks by prior studies. However, our experiment reveals the
performance of these models under realistic conditions.

Additionally, our method utilizes abstaining predictions (rejection to make a prediction), which
other baseline models do not perform. We provide the metrics for the abstaining predictions in
Table 5. The models that do not perform abstaining predictions always predict the novel specimens
incorrectly since these samples belongs to a new class. The proposed ability to predict novel
samples as "other" may still require the model to have seen the given specimen in the "other" class,
which is not as effective as rejecting to make a prediction, which incorporates uncertainty in the
model. In addition, as pointed out by Loi et al. [47], predicting specimens as "other" class often
results in false predictions due to supervised models’ common inability to learn patterns from a
small number of samples. Our method novel ability to reject making a prediction yields promising
results in identification of novel malware. Interestingly, around 22% of the malware which we
saw in the known set were also predicted as abstaining by the HNMFk Classifier. This 22% we
referred as false-abstaining, since the specimens here belongs to classes that we had labels for.

19

TOPS, December 24, 2021, Woodstock, NY Eren et al.

Table 4. HNMFk Classifier is compared against the state-of-the-art supervised classifiers. HNMFk Classifier,
a semi-supervised method, surpasses the previous state-of-the-art models, which are supervised, in malware
family classification.Weighted F1, Precision, and Recall scores are provided for multi-class classification with
imbalanced data. The F1 scores of HNMFk Classifier and HNMF2 Classifier does not include the abstaining
predictions (score includes the specimens where the prediction was not rejected)

.
Model F1 Precision Recall Tune Time Train&Predict Time
HNMFk Classifier (semi-supervised) 0.80 0.85 0.77 5.77 days 7.91 days
HNMF2 Classifier (semi-supervised, ablation study) 0.77 0.82 0.74 5.77 days 2.83 days
XGBoost+SelfTrain (semi-supervised) 0.76 0.78 0.73 2.06 days 4.72 hours
XGBoost (supervised) 0.74 0.77 0.72 2.06 days 2.93 hours
LightGBM (supervised, tuned on stratified subset) 0.65 0.74 0.64 11.09 days 3.02 hours
MLP (supervised) 0.72 0.76 0.71 1.02 days 30 minutes
LightGBM+SelfTrain (semi-supervised) 0.64 0.69 0.61 11.09 days 9.44 hours

Importantly, around 42% of the novel malware (i.e. the malware which we did not see in the known
set), are classified as abstaining. This 42% is referred as true-abstaining since our model did not
have a reference label for these specimens in the known set. We also note that both true and false
abstaining predictions would be caused by signatures or patterns extracted by NMFk being distinct
from the labeled samples. Hence, it is possible that a detailed investigation and utilization of latent
signatures can help to reveal characteristics that differ given specimen from the known samples
(similar to the prior work in latent mutational cancer signatures [5]) and result in improvement of
the abstaining predictions, as also shown by the follow-up work [23].
In Table 5, for completeness, we also provide F1 scores for each baseline that is calculated only

of the specimens that HNMFk Classifier did make a predictions (i.e. it did not abstain). Notice
that the F1 scores of our baselines increase, even surpass our model in some cases, when the
rejection to make predictions is not included in the score calculations. This result points out that
the abstained samples are hard to correctly classify since our baselines yield lower scores when
they are included (see the scored reported in Table 4). While the baselines falsely predicted the
families for the harder specimens, HNMFk Classifier rejected to make a prediction and managed to
maintain higher performance.

Table 5. HNMFk Classifier is compared against the state-of-the-art supervised classifiers. The ability of the
HNMFk to discover novel families is shown. F1 - (Non-reject) column shows the F1 scores for the specimens
that HNMFk Classifier did make a prediction on. Not applicable (NA) used at the cells where the case does
not apply to the given model. Abstaining Seen refers to false-abstaining predictions, samples that belong to
known classes that were seen in the training set. Differently, Abstaining Novel shows the true-abstaining
predictions, where the specimen belongs to a class that were not seen before.

Model Abstaining Seen (%) Abstaining Novel (%) F1 - (Non-reject)
HNMFk Classifier (semi-supervised) 22.06 42.70 0.80
HNMF2 Classifier (semi-supervised, ablation study) 16.96 34.16 0.77
XGBoost+SelfTrain (semi-supervised) NA NA 0.81
XGBoost (supervised) NA NA 0.80
LightGBM (supervised, tuned on stratified subset) NA NA 0.74
MLP (supervised) NA NA 0.79
LightGBM+SelfTrain (semi-supervised) NA NA 0.70

We also apply our ablation study, where the number of cluster selection heuristic is turned
off and rank-two factorization is used (i.e. 𝑘 = 2 at each node). In table 4, we can see that the
HNMF2 Classifier does perform better than our baseline models. However, the HNMFk Classifier
outperforms this method, which points out that carefully choosing the number of clusters improves

20

Semi-supervised Classification of Malware Families TOPS, December 24, 2021, Woodstock, NY

the separability and the overall performance during prediction. HNMF2 Classifier also reduces the
percent of abstaining predictions, including the reduced percent of abstaining predictions on novel
malware. We show additional results for ablation study on the automatic model selection below at
Section 5.3.2.

Finally, note that in Table 4we have also included the tuning time comparison between theHNMFk
Classifier and the baseline models. The 5.77 days of tuning time listed for HNMFk Classifier comes
from our performance analysis on selecting the cluster uniformity threshold 𝑡 and understanding
the effects of different hyper-parameter values of NMFk. We selected 𝑡 = 1 for higher performance
based on what we learned from the results of our experiments discussed in Section 5.1.1, and
showed that the hyper-parameters of NMFk has a minimal affect on the model’s performance in
Section 5.1.3. Note that the 𝑘 selection procedure of HNMFk Classifier, which comes from the NMFk
algorithm, is not a hyper-parameter adjustment, but a model selection, which is integrated in the
algorithm [38]; therefore, it is not included in the tuning time. Instead, it is reported as the model
training time. Our method takes about 8 days to complete running, which is significantly longer
than our baseline models. In comparison to the traditional ML methods (in our case, the baseline
models used in the experiments), our method is not a fast predictor. Instead, HNMFk Classifier is
a bulk-classification method. The aforementioned 8 days computation time is the total inference
time for the HNMFk Classifier. Therefore, our model is not suitable for real-time solutions, that is,
for analysing of a single specimen at the time it comes in the system. Our method rather can be
used for an accurate malware classification early in the labeling process. We have investigated the
use of latent signatures for a real-time solution in our follow-up work [23].

5.3 Ablation Studies
In our ablation studies we investigate the benefit of performing bulk classification and carefully
choosing the number of clusters. To this end, during the first study we change the bulk classifier
structure of our approach to form a more classical model, which we call the HNMFk Classical
Classifier. During the second study, we ablate the automatic model selection heuristic from our
method. The small subset of the EMBER-2018 dataset, as described in Section 4.2, is also used in
our ablation studies in this section. As mentioned above, we use the top 10 malware families in the
dataset with 1,000 specimens, each randomly sampled. Each experiment is run 10 times using a
different random subset each time.

5.3.1 Bulk Classification. To show that there is a benefit to doing bulk classification for our
methodology, we compare the performance of the HNMFk Classifier to the HNMFk Classical
Classifier, a model that does not perform bulk classification. This model also uses the known
samples to form the hierarchical graph. We then predict the unknown samples separately over the
hierarchical graph by following the edges, and computing similarity scores at nodes. For each of
the 𝑛 unknown malware samples, we obtain the cluster assignment by comparing the features 𝑋𝑖:
(𝑖th sample) to the rows of the latent factor H using cosine-similarity score:

cluster(𝑖) = argmax
0≤ 𝑗≤𝑘𝑜𝑝𝑡

(1 − cosine-distance(H𝑗𝑖 ,X𝑖:)) (3)

We follow each sub-clusters, comparing the features vector for the 𝑖th sample toH at each step, until
we reach a leaf where we predict the label of the specimen 𝑖 in a semi-supervised fashion. In Figure
14 we compare the F1 scores obtained from our ablation studies to HNMFk Classifier as the fraction
of unknown samples change. From the figure, it can be seen that performing classification with
HNMFk Classical Classifier yields unstable results, and our method HNMFk Classifier outperforms
this model. This shows that bulk classification is beneficial in obtaining stable and accurate inference
results.

21

TOPS, December 24, 2021, Woodstock, NY Eren et al.

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

0.6
5

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

Unknown Malware Fraction

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Av
er

ag
e

F1
 S

co
re

Classifier
HNMFk Classifier HNMFk Classical Classifier (ablation study) HNMF2 Classifier (ablation study)

Fig. 14. The performance of the HNMFk Classifier is compared to the other variants of our method from the
ablations studies, as the fraction of the unknown malware is changed.

5.3.2 Determination of the Number of Clusters. The HNMFk Classifier utilizes the estimated number
of components predicted by the NMFk algorithm to achieve good separability of malware families.
For the next ablation study, we look at the benefit of estimating 𝑘 , or the number of clusters. During
this study, we form another classifier named the HNMF2 Classifier, based on the previous work of
Gillis et al. [29], which chooses 𝑘 = 2 at each node, i.e. separate the data into two clusters at each
step, until each known sample falls in separate leaf nodes.
In Figure 14, we also provide the results for the HNMF2 Classifier. Choosing 𝑘 = 2 at each step

performs almost as well as our approach. As also argued in [29], this result points out the benefit of
hierarchical setting. Even if we make a bad separation of the samples due to rank-two factorization,
the hierarchical approach will fix the separations in the proceeding splits. However, although
slightly, our model outperforms the HNMF2 Classifier, which shows that choosing the number of
components carefully using a heuristic is beneficial.

6 FUTUREWORK
The HNMFk Classifier has a significantly longer process time than the other ML methods which
we used for comparison. The main cause for the increased computation time is the search of the
number of clusters. NMFk performs this search in a sequential manner, where each value of 𝑘
is tried, one after another. However, each rank 𝑘 factorization is independent from one another.
Therefore, future work can consider parallelization of this task, or a distributed version of this task
utilizing High-Performance Computing (HPC) environments [12, 13, 16, 17].
Another future work includes the manual analysis of the specimens that fall in each cluster in

the graph. It would be interesting to see which malware families are clustered together as we look
at different nodes in the graph. This can help us understand if malware is clustered by type at first
(such as botnet, backdoor, etc.), and then begin to separate into the families as we continue deeper
in the graph. Future work can also include benign-ware as a class similar to [47, 50, 71].

We can also try to accelerate the computation time for clustering techniques via similarity-based
approaches such as LZJD [57, 60] or BWMD [59] by using the HNMFk Classifier as a pre-processing
step to obtain a hierarchical graph, where we then apply similarity comparisons only in the sub-trees
instead of the entire dataset.

7 CONCLUSION
In this paper, we introduced a novel semi-supervised classifier named the HNMFk Classifer, that is
capable of performing accurate bulk classification of thousands of malware families under extreme
class imbalance conditions using the latent features extracted via NMFk, which is used to perform
automatic model selection, i.e. to estimate the number of clusters. Our method’s ability to perform

22

Semi-supervised Classification of Malware Families TOPS, December 24, 2021, Woodstock, NY

abstaining predictions allows it to maintain its accuracy when using a small amount of labeled data
and when performing inference over novel malware families. In our experiments, we classified
Windows malware using static malware analysis based features. HNMFk Classifer is compared
against the state-of-the-art baseline supervised and semi-supervised solutions, on which the prior
work reported benchmarks, and surpassed their performance under the realistic experiment setting.
Our new solution can be used to assist reverse engineers and malware analysts in the labeling
process of malware families, outside the real-time environments.

ACKNOWLEDGMENTS
This manuscript has been approved for unlimited release and has been assigned LA-UR-23-30350.
We thank Nick Solovyev and Drew Barlow for helpful suggestions and edits. This research was
partially funded by the Los Alamos National Laboratory (LANL) Laboratory Directed Research and
Development (LDRD) grant 20190020DR and LANL Institutional Computing Program, supported
by the U.S. Department of Energy National Nuclear Security Administration under Contract No.
89233218CNA000001.

REFERENCES
[1] Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov, Mikhail Trofimov, and Giorgio Giacinto. 2016. Novel feature

extraction, selection and fusion for effective malware family classification. In Proceedings of the sixth ACM conference
on data and application security and privacy. 183–194.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A next-generation
hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining. 2623–2631.

[3] BS. Alexandrov, LB. Alexandrov, and VG. Stanev et al. 2020. Source identification by non-negative matrix factorization
combined with semi-supervised clustering. US Patent S10,776,718 (2020).

[4] Boian Alexandrov, Velimir Vesselinov, and Kim Orskov Rasmussen. 2021. SmartTensors Unsupervised AI Platform for
Big-Data Analytics. Technical Report. Los Alamos National Lab.(LANL), Los Alamos, NM (United States). https:
//www.lanl.gov/collaboration/smart-tensors/ LA-UR-21-25064.

[5] Ludmil B Alexandrov, Jaegil Kim, Nicholas J Haradhvala, Mi Ni Huang, Alvin Wei Tian Ng, Yang Wu, Arnoud Boot,
Kyle R Covington, Dmitry A Gordenin, Erik N Bergstrom, et al. 2020. The repertoire of mutational signatures in human
cancer. Nature 578, 7793 (2020), 94–101.

[6] Ludmil B Alexandrov, Serena Nik-Zainal, David C Wedge, Samuel AJR Aparicio, Sam Behjati, Andrew V Biankin,
Graham R Bignell, Niccolo Bolli, Ake Borg, Anne-Lise Børresen-Dale, et al. 2013. Signatures of mutational processes in
human cancer. Nature 500, 7463 (2013), 415–421.

[7] Ludmil B Alexandrov, Serena Nik-Zainal, David C Wedge, Peter J Campbell, and Michael R Stratton. 2013. Deciphering
signatures of mutational processes operative in human cancer. Cell reports 3, 1 (2013), 246–259.

[8] H. Anderson and P. Roth. 2018. EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models.
ArXiv abs/1804.04637 (2018).

[9] H. S. Anderson and P. Roth. 2018. EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models.
ArXiv e-prints (April 2018). arXiv:1804.04637 [cs.CR]

[10] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and CERT Siemens. 2014. Drebin:
Effective and explainable detection of android malware in your pocket.. In Ndss, Vol. 14. 23–26.

[11] Márton Bak, Dorottya Papp, Csongor Tamás, and Levente Buttyán. 2020. Clustering IoT Malware based on Binary
Similarity. In NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium. IEEE, 1–6.

[12] Manish Bhattarai, Ismael Boureima, Erik Skau, Benjamin Nebgen, Hristo Djidjev, Sanjay Rajopadhye, James P Smith,
Boian Alexandrov, et al. 2023. Distributed non-negative rescal with automatic model selection for exascale data. J.
Parallel and Distrib. Comput. 179 (2023), 104709.

[13] Manish Bhattarai, Ben Nebgen, Erik Skau, Maksim Eren, Gopinath Chennupati, Raviteja Vangara, Hristo Djidjev, John
Patchett, Jim Ahrens, and Boian ALexandrov. 2021. pyDNMFk: Python Distributed Non Negative Matrix Factorization.
https://github.com/lanl/pyDNMFk. https://doi.org/10.5281/zenodo.4722448

[14] Christopher M Bishop. 1999. Bayesian pca. Advances in neural information processing systems (1999), 382–388.
[15] K. Bissell and L. Ponemon. 2019. The Cost of Cybercrime. Technical Report. Accenture, Ponemon Institute. https:

//www.accenture.com/_acnmedia/PDF-96/Accenture-2019-Cost-of-Cybercrime-Study-Final.pdf

23

https://www.lanl.gov/collaboration/smart-tensors/
https://www.lanl.gov/collaboration/smart-tensors/
https://arxiv.org/abs/1804.04637
https://github.com/lanl/pyDNMFk
https://doi.org/10.5281/zenodo.4722448
https://www.accenture.com/_acnmedia/PDF-96/Accenture-2019-Cost-of-Cybercrime-Study-Final.pdf
https://www.accenture.com/_acnmedia/PDF-96/Accenture-2019-Cost-of-Cybercrime-Study-Final.pdf

TOPS, December 24, 2021, Woodstock, NY Eren et al.

[16] Ismael Boureima, Manish Bhattarai, Maksim Ekin Eren, Erik West Skau, Philip Romero, Stephan Johannes Eiden-
benz, and Boian S. Alexandrov. 2022. Distributed out-of-memory NMF on CPU/GPU architectures. The Journal of
Supercomputing (2022). https://api.semanticscholar.org/CorpusID:247011761

[17] Ismael Boureima, Manish Bhattarai, Maksim E Eren, Nick Solovyev, Hristo Djidjev, and Boian S Alexandrov. 2022.
Distributed out-of-memory svd on cpu/gpu architectures. In 2022 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 1–8.

[18] Jean-Philippe Brunet, Pablo Tamayo, Todd R Golub, and Jill P Mesirov. 2004. Metagenes and molecular pattern
discovery using matrix factorization. Proceedings of the national academy of sciences 101, 12 (2004), 4164–4169.

[19] John Canny. 2004. GaP: a factor model for discrete data. In Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information retrieval. 122–129.

[20] Léna Carel and Pierre Alquier. 2021. Simultaneous dimension reduction and clustering via the NMF-EM algorithm.
Advances in Data Analysis and Classification 15 (2021), 231–260.

[21] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD ’16).
ACM, New York, NY, USA, 785–794. https://doi.org/10.1145/2939672.2939785

[22] Thiago de Paulo Faleiros and Alneu de Andrade Lopes. 2016. On the equivalence between algorithms for Non-negative
Matrix Factorization and Latent Dirichlet Allocation.. In ESANN.

[23] Maksim E Eren, Manish Bhattarai, Kim Rasmussen, Boian S Alexandrov, and Charles Nicholas. 2023. MalwareDNA:
Simultaneous Classification of Malware, Malware Families, and Novel Malware. arXiv preprint arXiv:2309.01350 (2023).

[24] Maksim E. Eren, Manish Bhattarai, Nicholas Solovyev, Luke E. Richards, Roberto Yus, Charles Nicholas, and Boian S.
Alexandrov. 2022. One-Shot Federated Group Collaborative Filtering. In 2022 21st IEEE International Conference on
Machine Learning and Applications (ICMLA). 647–652. https://doi.org/10.1109/ICMLA55696.2022.00107

[25] Maksim E. Eren, Nick Solovyev, Manish Bhattarai, Kim Ø. Rasmussen, Charles Nicholas, and Boian S. Alexandrov. 2022.
SeNMFk-SPLIT: Large Corpora Topic Modeling by Semantic Non-Negative Matrix Factorization with Automatic Model
Selection. In Proceedings of the 22nd ACM Symposium on Document Engineering (San Jose, California) (DocEng ’22).
Association for ComputingMachinery, New York, NY, USA, Article 10, 4 pages. https://doi.org/10.1145/3558100.3563844

[26] External Data Source. 2018. VirusShare Dataset. https://doi.org/10.23721/100/1504313
[27] Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua Zheng, and Ting Liu. 2018. Android Malware

Familial Classification and Representative Sample Selection via Frequent Subgraph Analysis. IEEE Transactions on
Information Forensics and Security 13, 8 (2018), 1890–1905. https://doi.org/10.1109/TIFS.2018.2806891

[28] Cédric Févotte and A Taylan Cemgil. 2009. Nonnegative matrix factorizations as probabilistic inference in composite
models. In 2009 17th European Signal Processing Conference. IEEE, 1913–1917.

[29] Nicolas Gillis, Da Kuang, and Haesun Park. 2014. Hierarchical clustering of hyperspectral images using rank-two
nonnegative matrix factorization. IEEE Transactions on Geoscience and Remote Sensing 53, 4 (2014), 2066–2078.

[30] Derek Greene, Derek O’Callaghan, and Pádraig Cunningham. 2014. How many topics? stability analysis for topic
models. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 498–513.

[31] Rachel Grotheer, Yihuan Huang, Pengyu Li, Elizaveta Rebrova, Deanna Needell, Longxiu Huang, Alona Kryshchenko,
Xia Li, Kyung Ha, and Oleksandr Kryshchenko. 2020. COVID-19 Literature Topic-Based Search via Hierarchical NMF.
arXiv preprint arXiv:2009.09074 (2020).

[32] Steven Strandlund Hansen, Thor Mark Tampus Larsen, Matija Stevanovic, and Jens Myrup Pedersen. 2016. An approach
for detection and family classification of malware based on behavioral analysis. In 2016 International Conference on
Computing, Networking and Communications (ICNC). 1–5. https://doi.org/10.1109/ICCNC.2016.7440587

[33] Simon Haykin. 1994. Neural networks: a comprehensive foundation. Prentice Hall PTR.
[34] Winston Haynes. 2013. Wilcoxon Rank Sum Test. Springer New York, New York, NY, 2354–2355. https://doi.org/10.

1007/978-1-4419-9863-7_1185
[35] Wenyi Huang and Jay Stokes. 2016. MtNet: A Multi-Task Neural Network for Dynamic Malware Classification. In

Proceedings of 13th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA 2016) (proceedings of 13th international conference on detection of intrusions and malware, and vulnerability
assessment (dimva 2016) ed.). Springer, 399–418. https://www.microsoft.com/en-us/research/publication/mtnet-multi-
task-neural-network-dynamic-malware-classification/

[36] IBM. 2021. Cost of a Data Breach Report. Technical Report. IBM. https://www.ibm.com/security/data-breach
[37] SM Ashiqul Islam, Marcos Díaz-Gay, Yang Wu, Mark Barnes, Raviteja Vangara, Erik N Bergstrom, Yudou He, Mike

Vella, Jingwei Wang, Jon W Teague, et al. 2022. Uncovering novel mutational signatures by de novo extraction with
SigProfilerExtractor. Cell Genomics (2022), 100179.

[38] SM Ashiqul Islam, Yang Wu, Marcos Díaz-Gay, Erik N Bergstrom, Yudou He, Mark Barnes, Mike Vella, Jingwei Wang,
Jon W Teague, Peter Clapham, et al. 2021. Uncovering novel mutational signatures by de novo extraction with
SigProfilerExtractor. BioRxiv (2021), 2020–12.

24

https://api.semanticscholar.org/CorpusID:247011761
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/ICMLA55696.2022.00107
https://doi.org/10.1145/3558100.3563844
https://doi.org/10.23721/100/1504313
https://doi.org/10.1109/TIFS.2018.2806891
https://doi.org/10.1109/ICCNC.2016.7440587
https://doi.org/10.1007/978-1-4419-9863-7_1185
https://doi.org/10.1007/978-1-4419-9863-7_1185
https://www.microsoft.com/en-us/research/publication/mtnet-multi-task-neural-network-dynamic-malware-classification/
https://www.microsoft.com/en-us/research/publication/mtnet-multi-task-neural-network-dynamic-malware-classification/
https://www.ibm.com/security/data-breach

Semi-supervised Classification of Malware Families TOPS, December 24, 2021, Woodstock, NY

[39] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated Gain-Based Evaluation of IR Techniques. ACM Trans. Inf.
Syst. 20, 4 (oct 2002), 422‚Äì446. https://doi.org/10.1145/582415.582418

[40] Jianguo Jiang, Song Li, Min Yu, Gang Li, Chao Liu, Kai Chen, Hui Liu, and Weiqing Huang. 2019. Android malware
family classification based on sensitive opcode sequence. In 2019 IEEE Symposium on Computers and Communications
(ISCC). IEEE, 1–7.

[41] Kaspersky. 2020. Machine Learning Methods for Malware Detection. Technical Report.
[42] Guolin Ke, Qi Meng, Thomas Finley, TaifengWang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM:

A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA,
3149‚Äì3157.

[43] Da Kuang and Haesun Park. 2013. Fast rank-2 nonnegative matrix factorization for hierarchical document clustering.
In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. 739–747.

[44] Daniel D Lee and H Sebastian Seung. 1999. Learning the parts of objects by non-negative matrix factorization. Nature
401, 6755 (1999), 788–791.

[45] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. 2018. Hyperband: A Novel
Bandit-Based Approach to Hyperparameter Optimization. Journal of Machine Learning Research 18, 185 (2018), 1–52.
http://jmlr.org/papers/v18/16-558.html

[46] Yeong Tyng Ling, Nor Fazlida Mohd Sani, Mohd Taufik Abdullah, and Nor AsilahWati Abdul Hamid. 2019. Nonnegative
matrix factorization and metamorphic malware detection. Journal of Computer Virology and Hacking Techniques 15, 3
(2019), 195–208.

[47] Nicola Loi, Claudio Borile, and Daniele Ucci. 2021. Towards an Automated Pipeline for Detecting and Classifying
Malware through Machine Learning. arXiv preprint arXiv:2106.05625 (2021).

[48] David JC MacKay et al. 1994. Bayesian nonlinear modeling for the prediction competition. ASHRAE transactions 100, 2
(1994), 1053–1062.

[49] Microsoft 365 Defender Threat Intelligence Team. 2020. Microsoft researchers work with Intel Labs to explore new deep
learning approaches for malware classification. https://www.microsoft.com/security/blog.

[50] Aziz Mohaisen, Omar Alrawi, and Manar Mohaisen. 2015. AMAL: High-fidelity, behavior-based automated malware
analysis and classification. Computers & Security 52 (2015), 251–266. https://doi.org/10.1016/j.cose.2015.04.001

[51] Morten Mørup and Lars Kai Hansen. 2009. Tuning pruning in sparse non-negative matrix factorization. In 2009 17th
European Signal Processing Conference. IEEE, 1923–1927.

[52] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath. 2011. Malware Images: Visualization and Automatic
Classification. In Proceedings of the 8th International Symposium on Visualization for Cyber Security (Pittsburgh,
Pennsylvania, USA) (VizSec ’11). Association for Computing Machinery, New York, NY, USA, Article 4, 7 pages.
https://doi.org/10.1145/2016904.2016908

[53] Benjamin T Nebgen, Raviteja Vangara, Miguel A Hombrados-Herrera, Svetlana Kuksova, and Boian S Alexandrov.
2021. A neural network for determination of latent dimensionality in non-negative matrix factorization. Machine
Learning: Science and Technology 2, 2 (2021), 025012.

[54] Andre T Nguyen, Edward Raff, Charles Nicholas, and James Holt. 2021. Leveraging Uncertainty for Improved Static
Malware Detection Under Extreme False Positive Constraints. arXiv preprint arXiv:2108.04081 (2021).

[55] Bernardo Quintero. 2019. VirusTotal += Bitdefender Theta. https://blog.virustotal.com/2019/10/virustotal-bitdefender-
theta.html

[56] Bernardo Quintero. 2019. VirusTotal += Sangfor Engine Zero. https://blog.virustotal.com/2019/11/virustotal-sangfor-
engine-zero.html

[57] Edward Raff and Charles Nicholas. 2017. An Alternative to NCD for Large Sequences, Lempel-Ziv Jaccard Distance. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Halifax, NS,
Canada) (KDD ’17). ACM, New York, NY, USA, 1007–1015. https://doi.org/10.1145/3097983.3098111

[58] Edward Raff and C. Nicholas. 2020. A Survey of Machine Learning Methods and Challenges for Windows Malware
Classification. ArXiv abs/2006.09271 (2020).

[59] Edward Raff, Charles Nicholas, and Mark McLean. 2020. A New Burrows Wheeler Transform Markov Distance. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence. http://arxiv.org/abs/1912.13046

[60] Edward Raff and Charles K. Nicholas. 2018. Lempel-Ziv Jaccard Distance, an effective alternative to ssdeep and sdhash.
Digital Investigation (feb 2018). https://doi.org/10.1016/j.diin.2017.12.004

[61] Peter J. Rousseeuw. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput.
Appl. Math. 20 (1987), 53–65. https://doi.org/10.1016/0377-0427(87)90125-7

[62] Tian Shi, Kyeongpil Kang, Jaegul Choo, and Chandan K Reddy. 2018. Short-text topic modeling via non-negative matrix
factorization enriched with local word-context correlations. In Proceedings of the 2018 World Wide Web Conference.
1105–1114.

25

https://doi.org/10.1145/582415.582418
http://jmlr.org/papers/v18/16-558.html
https://www.microsoft.com/security/blog/2020/05/08/microsoft-researchers-work-with-intel-labs-to-explore-new-deep-learning-approaches-for-malware-classification/
https://doi.org/10.1016/j.cose.2015.04.001
https://doi.org/10.1145/2016904.2016908
https://blog.virustotal.com/2019/10/virustotal-bitdefender-theta.html
https://blog.virustotal.com/2019/10/virustotal-bitdefender-theta.html
https://blog.virustotal.com/2019/11/virustotal-sangfor-engine-zero.html
https://blog.virustotal.com/2019/11/virustotal-sangfor-engine-zero.html
https://doi.org/10.1145/3097983.3098111
http://arxiv.org/abs/1912.13046
https://doi.org/10.1016/j.diin.2017.12.004
https://doi.org/10.1016/0377-0427(87)90125-7

TOPS, December 24, 2021, Woodstock, NY Eren et al.

[63] Bowen Sun, Qi Li, Yanhui Guo, Qiaokun Wen, Xiaoxi Lin, and Wenhan Liu. 2017. Malware family classification method
based on static feature extraction. In 2017 3rd IEEE International Conference on Computer and Communications (ICCC).
507–513. https://doi.org/10.1109/CompComm.2017.8322598

[64] Vincent YF Tan and Cédric Févotte. 2012. Automatic relevance determination in nonnegative matrix factorization with
the/spl beta/-divergence. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 7 (2012), 1592–1605.

[65] The Independent IT Security Institute. 2021. Malware Statistics & Trends Report: AV-TEST. https://www.av-
test.org/en/statistics/malware/

[66] George Trigeorgis, Konstantinos Bousmalis, Stefanos Zafeiriou, and Bjoern Schuller. 2014. A deep semi-nmf model for
learning hidden representations. In International Conference on Machine Learning. PMLR, 1692–1700.

[67] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using t-SNE. Journal of Machine Learning
Research 9 (2008), 2579–2605. http://www.jmlr.org/papers/v9/vandermaaten08a.html

[68] Raviteja Vangara, Manish Bhattarai, Erik Skau, Gopinath Chennupati, Hristo Djidjev, Thomas Tierney, James P Smith,
Valentin G Stanev, and Boian S Alexandrov. 2021. Finding the Number of Latent Topics with Semantic Non-negative
Matrix Factorization. IEEE Access (2021).

[69] Raviteja Vangara, Erik Skau, Gopinath Chennupati, Hristo Djidjev, Thomas Tierney, James P Smith, Manish Bhattarai,
Valentin G Stanev, and Boian S Alexandrov. 2020. Semantic nonnegative matrix factorization with automatic model
determination for topic modeling. In 2020 19th IEEE International Conference on Machine Learning and Applications
(ICMLA). IEEE, 328–335.

[70] Raviteja Vangara, Erik Skau, Gopinath Chennupati, Hristo Djidjev, Thomas Tierney, James P. Smith, Manish Bhattarai,
Valentin G. Stanev, and Boian S. Alexandrov. 2020. Semantic Nonnegative Matrix Factorization with Automatic Model
Determination for Topic Modeling. In 2020 19th IEEE International Conference on Machine Learning and Applications
(ICMLA). 328–335. https://doi.org/10.1109/ICMLA51294.2020.00060

[71] R. Vinayakumar, Mamoun Alazab, K. P. Soman, Prabaharan Poornachandran, and Sitalakshmi Venkatraman. 2019.
Robust Intelligent Malware Detection Using Deep Learning. IEEE Access 7 (2019), 46717–46738. https://doi.org/10.
1109/ACCESS.2019.2906934

[72] Wei Xu, Xin Liu, and Yihong Gong. 2003. Document clustering based on non-negative matrix factorization. In
Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval.
267–273.

[73] David Yarowsky. 1995. Unsupervised Word Sense Disambiguation Rivaling Supervised Methods. In Proceedings of the
33rd Annual Meeting on Association for Computational Linguistics (Cambridge, Massachusetts) (ACL ’95). Association
for Computational Linguistics, USA, 189‚Äì196. https://doi.org/10.3115/981658.981684

[74] Lijun Zhang, Zhengguang Chen, Miao Zheng, and Xiaofei He. 2011. Robust non-negative matrix factorization. Frontiers
of Electrical and Electronic Engineering in China 6, 2 (2011), 192–200.

[75] Shao-Huai Zhang, Cheng-Chung Kuo, and Chu-Sing Yang. 2019. Static PE Malware Type Classification Using Machine
Learning Techniques. In 2019 International Conference on Intelligent Computing and its Emerging Applications (ICEA).
81–86. https://doi.org/10.1109/ICEA.2019.8858297

[76] Yanxin Zhang, Yulei Sui, Shirui Pan, Zheng Zheng, Baodi Ning, Ivor Tsang, and Wanlei Zhou. 2020. Familial Clustering
for Weakly-Labeled Android Malware Using Hybrid Representation Learning. IEEE Transactions on Information
Forensics and Security 15 (2020), 3401–3414. https://doi.org/10.1109/TIFS.2019.2947861

26

https://doi.org/10.1109/CompComm.2017.8322598
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1109/ICMLA51294.2020.00060
https://doi.org/10.1109/ACCESS.2019.2906934
https://doi.org/10.1109/ACCESS.2019.2906934
https://doi.org/10.3115/981658.981684
https://doi.org/10.1109/ICEA.2019.8858297
https://doi.org/10.1109/TIFS.2019.2947861

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Non-negative Matrix Factorization (NMF)
	3.2 Automatic Model Selection: NMFk
	3.3 Hierarchical Non-Negative Matrix Factorization
	3.4 HNMFk Classifier

	4 Dataset
	4.1 Pre-processing
	4.2 Preparation of the Experiments
	4.3 System Configuration

	5 Experiments
	5.1 Methodology Performance Analysis
	5.2 Malware Family Classification Under Realistic Conditions
	5.3 Ablation Studies

	6 Future Work
	7 Conclusion
	Acknowledgments
	References

