distributed

lanl/THOR

The THOR Project (Tensors for High-dimensional Object Representation) aims to advance the state-of-the-art in tensor calculations, manipulation, and research. We strive to provide a high-performance tensor library for various scientific applications, containing ready-to-use utilities and applicaions in Fortran, Matlab, and Python.

lanl/T-ELF

Tensor Extraction of Latent Features (T-ELF) is one of the machine learning software packages developed as part of the R&D 100 winning SmartTensors AI project at Los Alamos National Laboratory (LANL). T-ELF presents an array of customizable software solutions crafted for analysis of datasets.

lanl/pyDNTNK

pyDNTNK is a software package for applying non-negative Hierarchical Tensor decompositions such as Tensor train and Hierarchical Tucker decompositons in a distributed fashion to large datasets. It is built on top of pyDNMFk.

lanl/pyDNMFk

pyDNMFk is a software package for applying non-negative matrix factorization in a distributed fashion to large datasets. It has the ability to minimize the difference between reconstructed data and the original data through various norms (Frobenious, KL-divergence).

lanl/pyDRESCALk

pyDRESCALk is a software package for applying non-negative RESCAL decomposition in a distributed fashion to large datasets. It can be utilized for decomposing relational datasets.