tensors

COVID-19 Multidimensional Kaggle Literature Organization

The unprecedented outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), or COVID-19, continues to be a significant worldwide problem. As a result, a surge of new COVID-19 related research has followed suit. The growing number of …

Random Forest of Tensors (RFoT)

Machine learning has become an invaluable tool in the fight against malware. Traditional supervised and unsupervised methods are not designed to capture the multi-dimensional details that are often present in cyber data. In contrast, tensor …

lanl/pyDNTNK

pyDNTNK is a software package for applying non-negative Hierarchical Tensor decompositions such as Tensor train and Hierarchical Tucker decompositons in a distributed fashion to large datasets. It is built on top of pyDNMFk. Tensor train (TT) and Hierarchical Tucker(HT) are state-of-the-art tensor network introduced for factorization of high-dimensional tensors. These methods transform the initial high-dimensional tensor in a network of low dimensional tensors that requires only a linear storage. Many real-world data,such as, density, temperature, population, probability, etc., are non-negative and for an easy interpretation, the algorithms preserving non-negativity are preferred. Here, we introduce the distributed non-negative Hierarchical tensor decomposition tools and demonstrate their scalability and the compression on synthetic and real world big datasets. pyDNTNK is developed as part of the R&D 100 award wining SmartTensors project.

lanl/pyQBTNs

pyQBTNs is a Python library for boolean matrix and tensor factorization using D-Wave quantum annealers. The library includes five different boolean tensor decomposition methods making up three distinct types of tensor networks. pyQBTNs is developed as part of the R&D 100 award wining SmartTensors project.

lanl/pyCP_APR

pyCP_APR is a Python library for tensor decomposition and anomaly detection that is developed as part of the R&D 100 award wining SmartTensors project. It is designed for the fast analysis of large datasets by accelerating computation speed using GPUs. pyCP_APR uses the CANDECOMP/PARAFAC Alternating Poisson Regression (CP-APR) tensor factorization algorithm utilizing both Numpy and PyTorch backend. While the Numpy backend can be used for the analysis of both sparse and dense tensors, PyTorch backend provides faster decomposition of large and sparse tensors on the GPU. pyCP_APR's Scikit-learn like API allows comfortable interaction with the library, and include the methods for anomaly detection via the p-values obtained from the CP-APR factorization.